Totem Timing detector: SAMPIC and UFSD at the LHC

Nicola Minafra on behalf of the TOTEM Collaboration

WORKSHOP ON PICO-SECOND TIMING DETECTORS FOR PHYSICS AND APPLICATIONS

16-18 May 2018 Torino

The TOTEM Experiment at the LHC

Commissioning: LHC preliminary results

Central Diffraction at LHC

The TOTEM Roman Pot system

The TOTEM Timing Detector

To associate the detected protons to the correct vertex, when there are multiple interactions per bunch crossing (pile-up) it is possible to measure the time difference between the arrival instants.

With a time resolution of 50 ps ($|Z_{CMS} - Z_{RP}| < 2 \text{ cm}$) the impurity of the selected events equal to 5% (instead of 22% without the timing information).

Ultra Fast Silicon Detectors (LGADs)

Ultra Fast Silicon Detectors (UFSD) are Low Gain Avalanche Detectors optimized for timing measurements employing a thin multiplication layer to increase the output signal at the passage of a particle of a factor ~10.

The signal generated at the passage of a MIP by a 50 μ m UfSD can be simulated using Weightfield2*.

arXiv:1608.08681

The signal is "amplified" by a gain layer inside the sensor itself, but the leading edge is slower and depends on the charge that is collected by the gain layer

Time precision: as good as **30 ps**...

Geometry of the detectors

Ch 7: 3.5 x 3.1 mm²	Ch 8: 5.5 x 3.1 mm ²
Ch 6: 3.5 x 3.1 mm²	Ch 9: 5.5 x 3.1 mm ²
Ch 5: 3.5 x 1.7 mm²	Ch 10: 5.5 x 3.1 mm ²
Ch 4: 3.5 x 1.4 mm ²	
Ch 3: 3.5 x 0.9 mm ²	Ch 11: 5.5 x 3.1 mm²
Ch 2: 3.5 x 0.9 mm ²	
Ch 1: 3.5 x 0.7 mm ²	
Ch 0: 3.5 x 0.6 mm ²	

- 12 channels per plane
- 4 planes per package
- 2 packages per arm (top and bottom)
- Time precision better than 50 ps per plane

Read-out chain

Bottom Vertical

SAMPIC

- 16 channels/chip
- Up to 64 samples/hit @ 10 GSa/s
- 1.5 GHz bandwidth
- 8-11 bit resolution
- 0.2-1.6 µs channel dead time

Trigger matching and frame building done in the Digitizer Board

Frame Building in the FPGA

Frame Filtering:

- Delay of incoming frames
- Check frame integrity (header, trailer, ...)
- Timestamp reconstruction and matching with trigger list
- Event rejected or send to channel FIFO
- USB readout available

- Trigger latency ~ 6 us
- 1 Frame for each trigger
- Max frame size ~ 350 B
- Trigger rate up to 100kHz

8/14

Test in the lab

Preliminary results from LHC tests

Tomography

Tomography is imaging by sections or sectioning, through the use of any kind of penetrating wave. <u>en.wikipedia.org/wiki/Tomography</u>

Preliminary results from LHC tests

Very low statistics.... ... just enough to double check the mapping!

Preliminary results from LHC tests

Only 2/3 of channels connected!

Time of Arrival measurement

allSamplesctpps_ti_fastsilicon_45_220_nr_tp_3_9

- Baseline: linear fit on the first baselinePoints
- Baseline is subtracted
- If max < saturationLimit
- Smoothing: sinc convolution using (smoothingPoints points) low pass filter with frequency lowPassFrequency
- Constant Fraction Discriminator, using cfdFraction and hysteresis

ADC and INL calibrations to be done...

Other algorithms tested, better performance with CFD

Conclusions

- Detector packages installed and tested during End of Year Technical Stop
- 2/3 of channels connected to the CMS DAQ
- Detector hardware tested and installed in the RPs
- Firmware developed and tested
- Software developed and included in CMS official framework
- Optimization and characterization in progress....

... physics coming with dedicated run at end of June...

CORE ME SCORE

totem.web.cern.ch