

Status of the research in the TOFFEE ASIC

Workshop on pico-second timing detector for physics and medical applications

Turin May 16th 2018 Jonhatan Olave On behalf of the **UFSD** collaboration

Outline

Status of the research in the TOFFEE ASIC

Jonhatan Olave

Motivation

TOFFEE = **T**ime **O**f **F**light Front End Electronics First prototype developed for timing measurements with multichannel LGADs

Applications

- Testing purposes
- > Usage in CT-PPS timing stations
 - Due to the high luminosity, 150 200 events/bunch crossing are expected
 - Time-tagging of protons is used as a pile-up mitigation tool
 - To determine the z position of the vertex with an accuracy of 4 mm, 20 ps time resolution is needed

Jonhatan Olave

Outline

Time resolution

Outline

Status of the research in the TOFFEE ASIC

Jonhatan Olave

Fast sensors: Ultra Fast Silicon Detectors (UFSD)

UFSD are thin Low Gain Avalanche Diodes (LGAD) sensors optimized of timing measurements of MIPs.

The CT-PPS UFSD sensors

The ASIC size and the number of channels have been chosen based on the CT-PPS sensor. Power consumption can be 20 mW/CH \rightarrow Power is not a constraint

Jonhatan Olave

4

Outline

Status of the research in the TOFFEE ASIC

Jonhatan Olave

The TOFFEE ASIC

Technology	CMOS 110 nm
Channels	8
Sensor capacitance	2-10 pF
Input dynamic range	3 fC – 60 fC
Analog gain	7 mV/fC
GBW	14 GHz
RMS noise (C=6pF)	800 µV
Discriminator output	2 – 14 ns
Power consumption	18 mW/ch
AVDD/DVDD	1.2 V/2.5 V

- * TOFFEE is a full custom analog chip developed by the INFN of Turin and the LIP institute of Lisbon
- Developed for the amplification and digitalization of signals coming from UFSD sensors
- The outputs are digitalized by the external High Precision TDC¹ and for this reason a stretcher line is used

Jonhatan Olave

5

The size 2.4 mm x 3.6 mm

≻

(1) J. Christiansen, 2004, http://cds.cern.ch/record/1067476

The amplifier: charge sensitive amplifier

Rise time	schematic \sim 2 ns / post-layout < 3 ns
Analog Gain	$\sim 7 \text{ mV/fC}$
Slew Rate +	\sim 25 mV/ns
Noise	~ 800 uV
Expected jitter	~ 32 ps

- Based on a telecopic cascode common source with split bias current
- Source degeneration resistors used for noise reduction
- > Wide dynamic range
- High slew rate

Outline

Status of the research in the TOFFEE ASIC

Jonhatan Olave

Analog signal reconstruction

$$SR^{+} = \frac{ToA_{VTH2} - ToA_{VTH1}}{VTH2 - VTH1}$$

Noise =
$$SR^+ \times Jitter$$

The reconstruction is done by means of a Vth scan

Complete system:

Complete system:

Complete system:

The effect of the <u>non-uniform charge deposition</u> can be studied with WF2⁽¹⁾

The contribution from the electronics can be measured with a laser

Jonhatan Olave

11

Jitter (35 ps) and non-uniform distribution (30 ps) determine the final expected time resolution (45 – 50 ps)

Outline

Beam tests

Four beam tests at CERN SPS - H8

In H8: 120 GeV/c pion beam

May:

- Telescope 3 TOFFEE boards + HPTDC
- Scan in sensor Vbias fixed Vth

July and End of August:

- TOFFEE board, read-out with differential probe
- UFSD CNM 1x1 mm² + USCS preAmp board (time resolution ~ 35 ps)
- Both recorded by a 4 GHz scope (LeCroy HDO9404)
- Several studies done

October

- Telescope of 2 TOFFEE boards read-out with the differential probe
- HPK pad 1x1mm² (50 um)

Analog gain

The analog gain is determined by measuring the signal amplitude generated by different input charges.

input charge

- The gain of UFSD changes with Vbias.
- This curve is well known from lab and beams test

Jonhatan Olave

13

Analog gain

The amplitude is determined exploiting the **bunched structure of particles** and the **properties of the Landau distribution** The number of particle per spill is fixed (300 – 400 particles/spill)

The Vth value which keeps 70% of the events/spill corresponds to the Landau MPV

Analog gain

TOFFEE HPK 50-micron sensors Amplitude vs Qin

Jonhatan Olave

15

Beam test: TOFFEE + HPK

Two layers of TOFFEE + Hamamatsu Photonics (HPK) pad 1 mm (50 um)

Only one channel is used while the others are grounded

Jonhatan Olave

16

Test beam: time resolution

Jonhatan Olave

Comparison with an old test beam

Low thresholds effects

Low thresholds effects

Low thresholds effects

Low thresholds effects

Low thresholds effects: Example of solution

ToA vs ToT

Unexpected effects

Jonhatan Olave

Unexpected effects

Outline

Status of the research in the TOFFEE ASIC

Jonhatan Olave

Outlook and future plans

• The signal reconstruction with threshold scans shows that the rise time (3.5 ns) is in good agreement with what expected (3 ns). Parasitics play an important role in this value.

Jonhatan Olave

25

- The prediction of the TOFFEE performance with WF2:
 - jitter slew rate limited to ~35 ps
 - non-uniform charge deposition is ~30 ps
- The measured gain is 6 mV/fC and is in good agreement with simulations
- The time resolution of TOFFEE is 50 ps for gain > 20

Future plans

- Extensive lab measurements to investigate about possible crosstalk
- Investigate on possible crosstalk

Acknowledgements

We kindly acknowledge the UFSD group for the support and the following funding agencies:

- INFN GruppoV
- Horizon 2020 Grant URC 669529
- Ministero degli Affari Esteri, Italy, MAE

Thank you for your attention

