# Radioactivity measurements at Milano Bicocca

#### JUNO-Italia meeting Frascati, March 14-15, 2018

Monica Sisti & Milano-Bicocca group

# Liquid Scintillator (LAB) radiopurity assay techniques



Two complementary approaches:

#### LAB Radiopurity test @ Daya Bay:

• exploiting Bi-Po coincidence

#### LAB Radiopurity measurement @ Milano-Bicocca:

- exploiting NAA and gamma measurements on HPGe
- further step: implementing beta-gamma coincidence to reduce background and improve the sensitivity on the LAB radiopurity.

### **Neutron Activation Analysis**

#### Chosen radioassay technique for Acrylic: NAA

- Advantages: very high sensitivity, proven feasibility
- Disadvantage: sensitive only to radioactive chain progenitors

$$^{A}Z$$
 + n  $\rightarrow$   $^{A+1}Z$  + y

Three key ingredients:

- high neutron flux
- high enough neutron capture cross section
- "convenient" daughter nucleus (γ emission, half-life time)



Sensitivity depends on:

- neutron exposure time
- interferences in the matrix
- background in the region of the gamma emission

#### care in the sample preparation is extremely important!

JUNO-Italia, 14 Mar 2018

#### Neutron Activation Analysis for <sup>40</sup>K, <sup>232</sup>Th and <sup>238</sup>U



### NAA irradiation campaigns @ TRIGA reactor



**1)** First neutron irradiation test on December 18, 2017 One RAW LAB sample was irradiated for **3 hours** in the Lazy Susan facility (together with the U, Th, and K standards and the container blank sample).

**2)** Second neutron irradiation test on January 15, 2018 One distilled LAB sample (after  $Al_2O_3$  column) was irradiated for 6 hours in the Lazy Susan facility (together with the U, Th, and K standards and the container blank sample).

JUNO-Italia, 14 Mar 2018

## NAA irradiation campaigns @ TRIGA reactor



The two LAB samples

- RAW LAB: Irradiation #1
- Distillated LAB (after Al<sub>2</sub>O<sub>3</sub> column): Irradiation #2

First irradiation tests to study:

- Radiolysis
- Interfering contaminants

3 hour irradiation (mild color change) –

6 hour irradiation (LAB has become yellowish)



### NAA irradiation campaigns @ TRIGA reactor





Teflon container with LAB inside (~9 g)



Teflon blank sample

Irradiation standards (K, Th, U, blank)

JUNO-Italia, 14 Mar 2018

## NAA irradiations: very preliminary results

#### LAB bulk contaminations

Analysis still going on, numbers are not definitive

| JUNO requests: | <sup>40</sup> K | <sup>238</sup> U | <sup>232</sup> Th  |   |
|----------------|-----------------|------------------|--------------------|---|
| ~ 1E-15 g/g    | [1E-12 g/       | /g] [1E-12       | g/g]   [1E-12 g/g] | ] |
|                |                 |                  |                    |   |
| RAW LAB        | 0.35 ± 0        | .09 < 1.2        | 2 < 13             |   |
|                |                 |                  |                    |   |
| Distilled LAB  | 0.13 ± 0        | .02 < 0.9        | 9 < 6.9            |   |

#### limits @ 90% C.L.

- We have an indication of a small (~10<sup>-13</sup> g/g) contamination with <sup>40</sup>K. May be leaching from the teflon container during neutron irradiation: we will carefully check this with further tests
- We are setting up a new measuring system that exploits beta-gamma coincidences to improve the sensitivity

#### **Coincident detectors for activated samples**

cascade

A possible way to increase sensitivity...

Neutron Activation on LAB samples

 $^{A+1}_{Z+1}Y$ 

Coincidence measurements on sample activated

γ-γ Ge-Ge detector @MIB

β-γ GeSparK detector @MIB

Strong background reduction



JUNO-Italia, 14 Mar 2018

 $^{A}X + n$ 

# y – y coincidence system

#### Ge-Ge HPGe: y-y detector

#### 2x GMX detector

- Coaxial detector (n-type)
- Relative efficiency: 100%
- Ultra Low Background configuration
- Low Threshold (20keV)

Shielding: 15cm copper 20cm lead







JUNO-Italia, 14 Mar 2018

### y – y coincidence system

#### Ge-Ge HPGe: Veto System



Anticoincidence technique

Plastic scintillator detector

#### Background suppression ~40%



JUNO-Italia, 14 Mar 2018

## y – y coincidence system

#### Ge-Ge HPGe: y-y coincidence

GMX2019

Dedicated acquisition system allow to detect signals registered in coincidence considering a very sharp time windows







GMX2200

 $\beta$  – y coincidence system

#### Ge-SparK: $\beta^{-}$ - $\gamma$ detector

LAB samples will be **exposed** to a neutron flux

Will be perform coincidence

measurements on sample

activated by  $\beta - \gamma$  detector

We are developing a new detector

suitable for this purpose

JUNO-Italia, 14 Mar 2018





 $^{A}X + n \xrightarrow{B^{-}} ^{A+1}Z + \gamma$ 

### $\beta$ – y coincidence system

#### Liquid Scintillator: LAB (Linear Alkyl Benzene)





#### Hamamatsu R12669





External source: <sup>22</sup>Na (60kBq)



## β – y coincidence system

#### **HPGe detector setup**

HPGe P-Type

Relative Efficiency: 30%

Cryostat: L configuration

Carbon Window Input

Low Background configuration





#### Electronic Chain :

- Amplifier:
- H.V.:
- ADC/MCA:

ORTEC model 672 ORTEC model 659

National Instruments Board 2Gs/s; 2Channel; 64MB/ch



JUNO-Italia, 14 Mar 2018

# $\beta$ – y coincidence system



# β – y coincidence system

#### **Coincidence measurement: STD Uranium**



## β – y coincidence system



# $\beta$ – y coincidence system

Mainly hardware work in the last month



Monica Sisti – Radio meas at MIB

JUNO-Italia, 14 Mar 2018

# $\beta$ – y coincidence system

Mainly hardware work in the last month





**Sealed Plexiglass box saturated with Rn gas** 

#### to study different surface protection methods to avoid Rn implantation (in particular on Acrylic)

**1** Si-barrier surface detector dedicated to these studies



 $A_{222Rn} = (250 \pm 5) \ kBq/m^3$ 



JUNO-Italia, 14 Mar 2018

| Sample           | Exposure time [days] |
|------------------|----------------------|
| Acrylic Opaque 1 | 29                   |
| Acrylic Smooth 1 | 86                   |
| Acrylic Opaque 2 | 72                   |
| Acrylic Opaque 3 | 90                   |
| Acrylic Opaque 4 | 39                   |

222Rn



|                                         | $\tau_{12} = 3.8 \text{ d}$                                               |                                                                                                                                  |                       |                                      |                                      |  |
|-----------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------|--------------------------------------|--|
|                                         | 218Po                                                                     | α - 5.489 MeV<br>B.R. 99.9 %                                                                                                     |                       | Duration [min]                       | Observed isotopes                    |  |
|                                         | $\tau_{1/2} = 3.1 \text{ m}$                                              | α – 6.00 MeV                                                                                                                     | Measurement 1 (M1)    | 3                                    | <sup>218</sup> Po, <sup>214</sup> Po |  |
| ₹<br>214Pb<br>τ <sub>1/2</sub> = 26.8 m | B.R. 100 %                                                                | Measurement 2 $(M2)$                                                                                                             | 3                     | <sup>218</sup> Po, <sup>214</sup> Po |                                      |  |
|                                         | β – 0.72 MeV                                                              | Measurement 3 (M3)                                                                                                               | 3                     | $^{218}$ Po, $^{214}$ Po             |                                      |  |
|                                         | ₹<br>214Bi<br>T = 19.8 m                                                  | B 3.26 MeV B.R. 19 %                                                                                                             | Measurement 4 (M4)    | 10                                   | $^{214}$ Po                          |  |
| 1/2 10.0 m                              | β – 1.51 MeV B.R. 40 %<br>β – 1.00 MeV B.R. 23 %<br>β – 1.88 MeV B.R. 9 % | Measurement 5 $(M5)$                                                                                                             | 10                    | $^{214}$ Po                          |                                      |  |
|                                         | 214Po<br>τ <sub>1,2</sub> = 163 μs                                        |                                                                                                                                  | Measurement 6 (M6)    | 20                                   | $^{214}$ Po                          |  |
|                                         |                                                                           | μ<br>α - 7.686 MeV<br>B.R. 99.9 %                                                                                                | Measurement 7 $(M7)$  | 20                                   | $^{214}$ Po                          |  |
|                                         | 210Pb<br>τ <sub>1/2</sub> = 22.3 y                                        |                                                                                                                                  | Measurement 8 (M8)    | 20                                   | $^{214}$ Po                          |  |
| γ – 46.5 keV<br>B.R. 4 %                |                                                                           | $\begin{array}{l} \beta = 0.169 \; \text{MeV} \; B.R. \; 81 \; \% \\ \beta = 0.63 \; \text{MeV} \; B.R. \; 19 \; \% \end{array}$ | Measurement 9 (M9)    | 40                                   | $^{214}$ Po                          |  |
|                                         | 210Bi<br>τ <sub>1/2</sub> = 5.01 d                                        |                                                                                                                                  | Measurement 10 (M10)  | 40                                   | $^{214}$ Po                          |  |
| α-5.3 MeV                               |                                                                           | β-1.17 MeV<br>B.R. 99 %                                                                                                          | Measurement 11 (M11)  | 40                                   | $^{214}$ Po                          |  |
| 0.11.100 /0                             | 210Po<br>τ <sub>1/2</sub> = 138.4 d                                       | ł                                                                                                                                | Long Measurement (LM) | see Table $2.3$                      | <sup>210</sup> Po                    |  |

Monica Sisti – Radio meas at MIB

JUNO-Italia, 14 Mar 2018

I.A. 24.2 %

206Pb stable







JUNO-Italia, 14 Mar 2018



JUNO-Italia, 14 Mar 2018

Opaque Acrylic 4

Monica Sisti – Radio meas at MIB

 $14.3 \pm 0.5$ 

 $8.4 \pm 0.2$ 

 $7\pm1$ 



#### D.F.=deep fraction

JUNO-Italia, 14 Mar 2018

### Conclusions

 By means of the coincident measuring systems we should approach the zero-background condition



In this way we hope to reach the 10<sup>-14</sup>–10<sup>-15</sup> g/g sensitivity requested for the LAB radiopurity

 Radon implantation measurements show that dust control during acrylic sphere mounting is crucial to avoid <sup>210</sup>Pb of the LAB

Also leaching from acrylic to LAB may be a problem?