Particle Detectors for Hadron Physics and Applications

- Introduction
- Detector Physics for HP, Examples:
 - CBELSA/TAPS, Bonn
 - PANDA at FAIR
 - (+ε miscellaneous)
- Summary

Kai-Thomas Brinkmann

Genoa Jan 30, 2018

University of Gießen

founded in 1607

Justus Liebig

Heinrich Buff

Wilhelm Conrad Röntgen

Wilhelm Carl Werner Otto Fritz Franz Wien

Walther Bothe

Veggasi a tergo.

CBELSA/TAPS

(How to make an old work horse jump higher.)

 Double-polarized meson production in γp, γn

UNIVERSITA

- Baryon resonances
- Meson production (η, ω, η') in nuclei
- Tagged photon beam
 E_v < 3.2 GeV

Systematic Study of the Excitation Spectra of Hadrons: Photoproduction at ELSA

Systematic Study of the Excitation Spectra of Hadrons

(qup)

CBELSA/TAPS

- Crystal Barrel detector 1230 Csl crystals
- Inner-detector cylinder of 513 scintillating fibers
- forward detector (FWPlug)
 90 Csl crystals with PM's, 12ⁿ-30ⁿ
- forward detector (MiniTAPS) 216 BaF₂, 1⁰-12⁰

Close to 4π coverage

How to make an old work horse jump higher.

Physics

Problem

• <u>experiments on neutrons</u>

- neutron detection next to impossible \rightarrow identification of $\pi^0 \rightarrow \gamma \gamma$ $\rightarrow 2\gamma$ -coincidences on trigger level

higher rates

- faster detectors

CsI: photodiodes BaF₂: PMTs

- → new readout: APD
- → filters remove slow component
- radiation hardness of detectors
 - \rightarrow partly use PbWO₄ instead of BaF

 \rightarrow annealing

CBELSA/TAPS

CBELSA/TAPS

TAPS Upgrade (and "Repair")

- Upgrade of rate capability
- Performance survey and repair

BaF₂: Scintillation mechanism

TAPS Upgrade

Optical filter between crystal and PMT

high transmittance for fast component
 high grade of suppression for slow component

 $\lambda_{max}: \ 214 \ nm \pm 3 \ nm$ transmission @ $\lambda_{max}: \ 36 \ \% - 42 \ \%$

TAPS Upgrade

Impact on signal shape

• Response to lowenergy (MeV) photons

Test experiment @ MAMI-A2

 E_{γ} : 50 – 650 MeV

Relative calibration via cosmics

Reconstruction of the shower (7-array)

energy resolution achieved

КIВ

Spin-Off: Measurements for Particle Therapy

Heidelberger Ionenstrahl-Therapiezentrum (HIT)

Marburger Ionenstrahl-Therapiezentrum (MIT)

Jan 30, 2018

Radiotherapy With Light Heavy Ion Beams

- Two proton/¹²C clinical facilities in operation in Germany: HIT, MIT
- Clinical standard: protons (up to 220 MeV), ¹²C (up to 430 MeV/u)
- Planned: ⁴He (up to 220 MeV/u), ¹⁶O (up to 430 MeV/u)

Production Cross Sections for Positron Emitters

Developments for PANDA

- Particle Tracking: PANDA Micro-Vertex Detector
- Particle Calorimetry: PANDA Electromagnetic

Calorimeter

Start Setup

Full Setup

HEP: interference of coupled channels

Spectroscopy **New narrow XYZ:** Search for partner states

Production of exotic QCD states: **Glueballs & hybrids**

Bound States of Strong Interaction

HEP: underlying elementary processes

Nucleon Structure **Generalized** parton distributions: Orbital angular momentum

> **Drell Yan process:** Transverse structure, valence anti-quarks

Timelike formfactors:

Astro physics: Strange n-stars

Strangeness **Strange baryons:** Spectroscopy Polarisation

Nuclear physics: Hypernuclear spectroscopy

Hypernuclear physics: Double Λ hypernuclei Hyperon interaction

Nuclear Physics

Low and high E, e and μ pairs **HI** collisions comparing QGP Hadrons in nuclei: to elementary Charm and strangeness reactions in the medium

tracking

The **PANDA** Micro-Vertex Detector

Design adopts state-of-the-art silicon sensor techniques Focus on PANDA-specific issues:

- High and asynchronous interaction rate
- Strongly asymmetric angular distributions
- Versatile experimental requirements
- D meson ID
- Minimum mass budget

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

Solutions:

- Heterogeneous design (pixel and strip sensors)
- Very compact design
- Limited number of space points / layers (default 4)
- Novel readout electronics (non-triggered readout)
- Tracklets real-time (fast on-line processing)

The **PANDA** MVD Project Silicon pixel sensors

Small pixel cells – $100 \times 100 \mu m^2$ Specialized custom hybrid @ ToPix - .13 µ technology

Features:

- ToT to retain (some) energy information
- fast handling for high data rates
- "untriggered" readout of data
- rad hard within "typical" limits
- minimum material load ⇔ sensor technology (EPI)

Silicon strip sensors

Less traversed material than pixels, smaller number of channels

Features:

- pitch of 50 150 µm
 - double-sided sensors, 300 µm thick
 - specialized solution for front-end

Technical Design Report for the:

PANDA Micro Vertex Detector

Strong Interaction Studies with Antiprotons

FANDA Collaboration

The **PANDA** MVD Project Hardware

Cleanroom facility (ISO class 6)

Workshop: Specialized equipment in-house, customized, on short notice

- Bonding tools
- Mounting tools

Semi-automatic wedge wire bonder

Automatic prober

Hardware

1060 nm laser test stand operational

182

Strip number

183

181

50

179

180

Jan 30, 2018

185

The **PANDA** MVD Project Hardware: double-sided Si strip sensors, PANDA grade

PANDA wafer CiS Erfurt

Radiation damage test

Probe station characterization

Flex PCB

<25 µm Cu 30 µm solder resist. 25 µm dielectric /carrier

Hardware: development of a non-triggered Frontend readout chip (PASTA)

First prototype submitted to MPW run (04/2015)

Features:

- 64 channels
- Time over threshold
- Small power consumption

Delivery in Dec '15, tests ongoing Re-submission envisaged Final design planned in ~ 2 years Module controller chip developed in parallel

PASTA

counts

180

160

140

120

100

80

40

20

PASTA floorplan (4x6 mm²)

PASTA tests: Linearity and Time-over-Threshold response in beam on PANDA strip sensor (pc = 800 MeV protons)

Manual stave assembly tool

- 3-axis manipulator mounted on rails
- Modular stave/board holder
- Vacuum operated sensor holder

Cooling test

Test stave

4. Wire bonding (on p-side only) between resistors and sensor

Additional test with double power (512 mW per chip), only on 9 resistors around the sensor

Jan 30, 2018

Cooling tests – Stave profile

Temperature profile with heating at nominal power (16.9 W); cooling water @ 20° C, different fluxes. Room temperature 28.5 °C

Hardware

Tracking station:

Si strip sensors, 4 layers

- Handling (B
- Sensor tests (B
- Tracking development (soft/hard) (F
- Infrastructure (P

Jan 30, 2018

Measurements

CERN, COSY, DESY, ELSA:

- Pixel tracking station triggerless readout
- Synchronisation with the strip telescope @50 MHz
- 10 GeV/c pions, pixel + strips: residuals $\sigma_{x,v} = 18 \mu m$

p, Si strips APV S25

p, ToPix pixel array

Prototypes

1st sensor-flex hybrid prototype

S3 double-sided microstrip sensor

Full-size trapezoidal sensor module (fw disc strips)

transition board

high density data cable

Full-size rectangular sensor module (barrel strips)

- Detector layout frozen
- Rad hardness verified
- Wafer selection finished

~50% of sensors for barrel ordered

- Laser probing operational
- PASTA design advanced, v.1 tests ongoing
- ThinFlex, mounting components available
- More beam tests
- Beam telescope infrastructure

JUSTUS-LIEBIG-UNIVERSITAT GIESSEN

Poly-silicon biasing

Target Spectrometer @ PANDA:

based on high-quality PWO-II

physical goals of PANDA require further development

	PWO-I (CMS)	PWO-II (PANDA)
luminescence maxi- mum, nm	420	420
La, Y concentration level, ppm	100	40
expected energy range of EMC	150MeV - 1TeV	10MeV - 10GeV
light yield, phe/MeV at room temperature	8-12	17-22
EMC operating tem- perature, °C	+18	-25
energy resolution of EMC at 1GeV, %	3,4	2,0

Contributions to the PANDA - EMC

In-house:

@ 360 nm

@ 620 nm

@ 420 nm Gießen

55 60

Transmission [%]

Optical transmission

65 70 75

80

1200

1000

800

600

400

200

35

Jan 30, 2018

40 45 50

crystals / 1%

- Quality control of PWO-II crystals from BTCP
- R&D on PWO crystals from SICCAS

Radiation hardness

- $T = \exp(-k \cdot x)$ with x = 20 cm
- $\Delta k = k_{\text{after irr.}} k_{\text{before irr.}}$
- irradiation with an integral dose of 30Gy (⁶⁰Co source)

KTB

PANDA EMC: Stimulated Recovery of Rad Damage

Jan 30, 2018

PANDA - EMC

Prototype experiments:

• Response of PROTO60 to 15 GeV positrons @ CERN

Development of new prototype PROTO120

σ(x,y)~1mm

- 120 PWO crystals
- read-out with 2 LAAPDs
- APFEL 1.4 as PA
- individual carbon fiber alveolae
- implementation of final SADCs

PANDA Forward EMC

~ 100ps/[] E

~ 1 cm

E_{reco} =

Prototype experiments:

test @ A2-MAMI

Tagged photons

Х

PROTO 120:

- close to final barrel design
- 120 PbWO₄ crystals
- operated @ -25°C
- readout with 2 LAAPDs
- APFEL ASIC v 1.5

PROTO120

- 120 PWO crystals of type 1, 2 and 3
- 2 LAAPDs per crystal
- APFEL readout 1.4 with final dynamic range (dynamic range of 10000 and programmable amplification 16/32)
- close to final mechanics
- new x-y-z table

Jan SU, ZUIO

- NUF in light collection deteriorates the energy resolution
- Several concepts for a uniformization have been investigated
- De-polishing of one lateral side face ($R_a = 0.3 \mu m$) provides the best results (already investigated for the CMS ECAL)

PANDA EMC

Prototyping of stimulated recovery of PWO crystals

=> standard procedure

- Hadron rad damage studies
- Light-yield uniformity studies
- Rad hardness of laAPDs
 - => standard procedure under development
- Barrel prototype PROTO 120, many procedures and components standardized

Co-60 irradiation, JLU

JUSTUS-LIEBIG-

Proto analysis

PROTO120@MAMI

Next Step: PANDA Barrel Slice

Jan 30, 2018

PANDA Barrel Slice Module Assembly

PANDA Barrel Slice Assembly

'B

PANDA Barrel Slice Assembly

The Panda and I in 2016

Thank you.