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INTRODUCTION 2

» Discuss two questions

» Isthe GC excess mainly due to a collection of point sources or a truly diffuse source like
annihilating DM?

» What source classes are the ~33% of point sources found in the 3FGL catalog?
» Can we answer these questions with the help of machine learning?
» Satellite data is basically image data, which means we can use Facebook & Google’s stuff!

» | will give a few examples of how computer vision could help y-ray astronomy and how we apply it
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WHAT IS COMPUTER VISION? 3

Computer vision

MACHINE NEURAL DEEP ;
LEARNING NETWORKS LEARNING [\ CONVNETS

RANDOM
FORESTS

Instead of the programmer defining what the computer should do (IFTTT), supply an objective and learn
from data



NEURAL NETWORKS & DEEP LEARNING
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(sigmoid, tanh, RelLU, ...)

During training:

.
Backpropagate error & update weights using gradient descent



CONVOLUTIONAL NEURAL NETWORKS :

Fealure maps

Convolutions Subsampling Convolutions ~ Subsamgling  Fully connected

> Weights are fixed per kernel

» Translational invariance

> Greatly reduced weight parameter space
(=faster training convergence / more accuracy / less
Convolved data necessary)

Feature

Image



HOW TO APPLY THIS TO Y-RAY DATA?

» Goal: determine the component of point sources vs diffuse source of the GC excess — fs.

» Proof of concept: arXiv:1708.06706

v

v

» Output is photon count map of photons between 1-6GeV
(no spectrum information, will be improved in new version)

Difficulty here: there is only 1 image of the GC, in contrast to galaxy classification for example

Simulate GC using Fermi tools (3 parameters (fs,, BG model used, unresolved PS flux distribution))

» Generate training + validation data from simulations

» Sample the same point multiple time because of randomisations
(like point source coordinates & added noise)

» Train network to predict fic accurately in all scenarios of the other components

v

Apply to real image to get prediction of fg.
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http://arxiv.org/abs/arXiv:1708.06706




CONVOLUTIONAL NEURAL NETWORK

Feature Feature Feature Feature Feature Hidden Hidden
Inputs maps maps maps maps maps units units Outputs
1@120x120 64@60x60 128@30x30 128@16x16 256@8x8 256@4x4 256 512 1
Flatten Fully Fully
connected connected

Max-pooling after every convolution
Local response normalization after every other convolution

» f.,.=0.89

>

Every layer has L2 regularisation (penalise high weights to prevent overfitting)

v

1.2 million images of 120x120 values

v

~10 million internal parameters

v

1 day to train each network (TensorFlow, 2x GTX1080, >5000 cores, ~16 TFLOPs)



fsrc true value

RESULTS

» Train using 3 background models, test on 2 others

» Test data: 2x30000 test points
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CAVEATS

» This was a proof of concept, because of simulation limitations:

» Reality may be outside the sampling space for generating images:
» The range of flux distribution is not large enough
» The background models used are probably too similar
» The y parameter for the gNFW profile was fixed

» —> Accuracy is hard to define if the network needs to extrapolate



CAVEATS

» This was a proof of concept, because of simulation limitations:
» Reality may be outside the sampling space for generating images:
» The range of flux distribution is not large enough
» The background models used are probably too similar
» The y parameter for the gNFW profile was fixed
» —> Accuracy is hard to define if the network needs to extrapolate
» Only returns fg, no prediction on other simulation parameters
» foc is not known, so no way to do sanity-check on known parameters

» Input data has no distinction between 1 or 6 GeV — data can be enriched
by adding energy bins



FERMIAI V2

» We attempt to address all these issues in a new analysis:

» Instead of using 5 fixed background models, randomise background model
generation — much larger input parameter space

» Add 3 energy bins for the photon counts to the data instead of 1
» Update the ranges of the parameters to wider values during dataset creation

» Predict not only fs., but all (16) input parameters



FERMIAI V2

» Example simulations
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FERMIAI V2

» Problem is much more difficult (16D regression instead of
1D), use a different technique: transfer learning
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Delete last layer, replace with 16x
4-layer dense network



FERMIAI V2

» Seems to work extremely well

» Even though the parent network (trained on imagenet) is completely unrelated
to y-rays

» But: if random weight initialisation (default), every ConvNet needs to learn the

n i

concept of “lines”, “squares” etc.

» Like you learn a baby Italian, it's easier if the baby first learns another language
and then [talian. Even if it's Chinese.




POINT SOURCE CLASSIFICATION

» Another topic where ML can be very useful is in the
localising and classification of point sources

» Copy from eg self-driving car research (segmentation maps):




POINT SOURCE CLASSIFICATION

» Label every pixel as “point source” or “background”

n in

» Or even label every pixel as “pulsar”, “blazar”, ..., or “background”

» Catalog generator

» U-nets, from the tensorflow example page:
segmentation of galaxies




POINT SOURCE CLASSIFICATION 2000 citations since 2015

U-Net - Computer Vision Group, Freiburg
https://imb.informatik.uni-freiburg.de/ le/ronneber/u-net/ v Vertaal deze pagina

} U - n etS door O Ronneberger - Geciteerd door 2422 - Verwante artikelen
U-Net: Convolutional Networks for Biomedical Image Segmentation. The u-net is convolutional network

architecture for fast and precise segmentation of images.
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GANS

» GANs can learn to generate things. You know the faces example




GANS

» Already used in denoising astro images
» Could be used to greatly speed up background model generation

» Or any other type of simulation (output doesn’t have to be images)

degraded GAN recovered

Rot=2.5:;"100



DARKMACHINES

» FermiAl2 still under construction, but seems a feasible
approach with good outlook

» Many use cases for ML

» Interested in applications of machine learning in the field
of dark matter?

» www.darkmachines.org
Inclusive analysis of Fermi-LAT point sources

(but also gravitional lensing / collider experiments / ...)

» ~100 researchers in field of DM/ML working together

» 8-12 April workshop in ICTP, Trieste, Italy


http://www.darkmachines.org
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