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» My focus today: explain the NPTF as a method



Example Application: Fermi
Galactic Center Excess
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Galactic Center Excess in Fermi data

» Spherically symmetric excess (consistent with DM
annihilation) coodenough & Hooper, 2009; Fermi2015; ...

» Natural thermal relic: o 4v ~ 10725 cm? s (400+ papers)

» Energy spectrum is hard (peaking ~2 GeV) (see. byian et. al. 2014
and Calore et. al. 2015)

» Robust against mis-modeling cosmic-ray-induced emission

(but see E. Carlson et. al. 2016)



Dark Matter or dim Point Sources?

» Spherically symmetric population of millisecond pulsars

» Apd 812 (2015): T. Brandt, B. Kocsis—Globular cluster
model + MSP luminosity

» May appear more PS-like than DM annihilation



The Non-Poissonian Template Fit



Photon Statistics: DM vs. Point Sources
Dark Matter Point Sources
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Photon Statistics: Point Sources

> p,(f) = probability of finding k& photons in pixel p
» Smooth emission: Poissonian counting statistics:
p](qp) — )\ke—)\/k!
» Point-source emission: Non-Poissonian counting statistics
» (1) What is probability to find a PS in a given pixel?
» (2) Given a PS, what is the probability it produces &

photons?
F ni
(p) (E)) ) F 2 Fb
rce-count: ——— = AP ,
» Source-count T A e .
wa ) b

» Fis average flux (photons /cm? /s)
» AP follow a spatial template

» Calculate the p,(f’) with probability generating functions (maiyshev &
Hogg 2011) + recursion relations (Lee, Lisanti, B.S. 2014)
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» data set d (counts in each pixel {n,})
» model M with parameters 0

» The likelihood function:

p(do, M) =[] (0

pixels p
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N. Rodd, B.S., S. Mishra-Sharma, Astron. J. 2017

Open source: https://github.com/bsafdi/NPTFit
Extensive documentation:
https://nptfit.readthedocs.io

Fast and semi-analytic evaluation of p{*)(6) and p(d|0, M)
N c++

» any PSF, variety of dN/dS characterizations, arbitrary
number of PS templates.

Python interface
Bayesian (Multinest) and Frequentist (Miguitﬁ) options


https://github.com/bsafdi/NPTFit
https://nptfit.readthedocs.io

NPTF in practice: the Galactic
Center Excess



Fermi data

» Pass 8 data:
Ultracleanveto class, top
quartile by PSF (August 4,
2008—June 3, 2015)

» Energy range: ~2-12 GeV




The models: Poissonian templates

Fermi p6v11 diffuse (1) Fermi bubbles (1)

0 40 0 1

Isotropic (1)

4




The models: Non-Poissonian templates

Isotropic PS (4) NFW PS (4)

-

e Disk: n oc exp (—R/ 5 kpc) exp (—|z|/ 0.3 kpc)



The ¢ = 0° excess: source-count function

dN/dF [photons™' cm?® s deg?]
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eNPTF: Adding in Energy
dependence (in progress)
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The Energy-Dependent Non-Poissonian Template Fit
(eNPTF)

» M. Buschmann (UM), N. Rodd (MIT/Berkeley), B.S. (UM)
(to appear 2018)

» data set d (counts in each pixel {n{", n{?, ... n{¥)} in N,
energy bins)

» The likelihood function:

d!9 M H p(pl) (2) n(Ne)(e)
D

pixelsp =~ 777

» Keeps correlation between photons in same pixel but
different energy bins, allows for non-trivial spectra in M.
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The eNPTF
» The p:z)l) W) Vo) (6) computed from probability
generating functions + combinatorics
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The eNPTF example: The GCE with Monte Carlo

v

3 energy bins [2.0,5.0,12.6,31.7] GeV

known 3FGL sources masked
Simulated components:

» Diffuse emission

» Known PSs

» Unresolved disk and isotropic PSs

» Spherical PS population with spectrum of GCE
Templates:

» Diffuse emission (3)

» Known PSs (3)

» Spherical PS population with spectrum of GCE (4 + 2)
» dN/dF is broken power-law

v

v

v

v

Spectral definition: f; = Na/Ny, fa = N3/N;



The eNPTF example: The GCE with Monte Carlo

é@§5@0~ L
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Summary and Outlook

» NPTF a powerful method for characterizing populations of
unresolved point sources

» Basic idea: learn about populations of sources by giving up
on knowing about individual constituents
» Similar to e.g. angular power spectrum, but straightforward
to also include knowledge of spatial distribution of sources
and backgrounds
» NPTF has been applied to gamma-rays (Fermi), neutrinos
(lceCube), and also being applied to X-rays (NuSTAR)

» eNPTF to appear soon (2018) and be more powerful

» Warning: often more progress made by incorporating other
data sets (e.g., for the EGB knowledge of source locations
or for extragalactic DM annihilation using locations and
attributes of clusters)



Questions?
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Photon Statistics: Point Sources

» Calculate the p,(f’) with probability generating functions
» Generating function:

> 1 d¥p®)
POM =Y o o g =P
k=0 ’

t=0
» Point sources:
> dN®) gm
(p) — D o(4m P Y __-S
PP)(t) = exp an_:lxm(t 1)1 ) xm—/dS a5 €

AN ®) 1 dN®

) S~ &w) dF
» S is average number of photon counts

» £ s the exposure map

» Flux to Counts:

See Lee, Lisanti, BS 2014 for recusion relations



Check 1: the ¢ = 30° excess



Mask 4° around plane, out to 30° around ¢ = 30°
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Mask 4° around plane, out to 30° around ¢ = 30°

counts
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e Plots normalized for region within 10° of ROI center (b > 4°).



The ¢ = 30° excess: no evidence for spherical PSs

e NFW DM, NFW PS templates centered around ¢ = 30°
e Disk template centered around ¢ = 0°

0.25 3FGL unmasked
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The ¢ = 30° excess: no evidence for spherical PSs

e NFW DM, NFW PS templates centered around ¢ = 30°
e Disk template centered around ¢ = 0°

0.25 3FGL unmasked
E E E | NFW PS
oo — Disk PS
0.20} E f EE E Iso. PS |
2 e — NFWDM
T—ac 0.15 No NFW PS Template
-g : n
o
2 0.10f
g
%]
o
o "
0.05¢ vt
Jj " 10 15 20
T i L
0'000 15 20

fraction of flux [%]

e Bayes factor ~ 0.1



ROI: the ¢ = 0° excess



The ¢ = 0° excess: evidence for spherical PSs

e NFW DM, NFW PS templates centered around ¢ = 0°
e Disk template centered around ¢ = 0°

3FGL unmasked
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The ¢ = 0° excess: evidence for spherical PSs

e NFW DM, NFW PS templates centered around ¢ = 0°
e Disk template centered around ¢ = 0°

3FGL unmasked

0'2: [
| L NFW PS
1 [ — Disk PS
0,201 L Iso. PS |
> P — NFW DM
3 No NFW PS Template
go.1st R
g_ 0.2t !
S |
g 0.10¢ 0.1}
3 :
o 1
0.05} _ b, ;
] 000 5 10 15 2Q
0.00

5 10 15 20
fraction of flux [%]

e Bayes factor ~ 10° (3FGL unmasked), 10* (3FGL masked)



Extragalactic Gamma Ray
Background



Extragalactic Gamma-ray Background

Counts / Pixel
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Comparison of BL Lac and FSRQ resolved emission with Fermi-LAT sources
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Extragalactic Gamma-ray Background

Counts

/ Pixel
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Comparison of BL Lac and FSRQ resolved emission with Fermi-LAT sources

Fermi-LAT sources
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Extragalactic Gamma-ray Background

Counts / Pixel
10" 10
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3

Comparison of BL Lac and FSRQ resolved emission with Fermi-LAT sources
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Extragalactic Gamma-ray Background
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Comparison of BL Lac and FSRQ resolved emission with Fermi-LAT sources
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Why Understand the Extragalactic Gamma-ray
Background?

Counts / Pixel R
10" 10
1410.03696

» Constrain contributions from diffuse emission (dark matter)
» Probe source populations (BL Lac, FSRQs, MAGN, SFQG)
» Implication for other messengers (e.g., IceCube)



eNPTF details

’a‘:al—i_"'—*'ak
a+b= (a1 +b1,...,ar+bg)

b _ b1 by,

a’ =ay' ... a
|al!

al = —————.

arl ... - ayg!

» The counts originate from different templates, so if
Bpi = (npi1,.-.,np1 k) is the distribution of counts in the
I-th template, than ) " 8, = o, holds.
l

» For a single template [ and k different bins, the probability
to see 3, counts in pixel p :

— — —

) (0) = [t (8) Bya! (0.



eNPTF details

» Here, each \;,,,(0) in X(0) = (M1 (6),..., \ii(0))
corresponds to the probability that a count in template [

contributes to the m-th bin,
» Sum over all permutations to get probabilities

@ =3 IO

Zl ﬁpl =ap



DM annihilation with group catalogs

» 1. DM model + group catalog — gamma-ray flux map

Model / EFT Group catalogs Flux map

DM
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DM annihilation with group catalogs

» 1. DM model + group catalog — gamma-ray flux map

Model / EFT Group catalogs Flux map

D,

» 2. How do we search for that flux in Fermi data?

Fermi Data Background + Signal Templates Likelihood Profiles

200-2.52 GeV.

--Data

_isp EMMC6s%
MC 95%

ST 00 1t 107 o 10°
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DarkSky N-body simulation vs real data

Coma Cluster

Jint [GeVZ em ™)

108 1019
Jirue [GeV? ecm™]



Real Data limit consistent with DarkSky

» Remove handful of halos with large cosmic-ray emission
(TS > 5, o4v > 10 x best indiv. limit)

10_22 P —— Galaxy groups (this work)
[0 95% containment, -
68% containment

10_23 P Galaxy groups, no boost
——  Fermi dwarfs (2016)

10724 L

(ov) [em? 571

10—25 L
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Fermi Galaxy Groups
2MASS Tully Catalog, bb

10727¢ ,
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m, [GeV]

N



