Near-future Large Scale Radio surveys

Outline

Introduction
All-sky radio surveys
Continuum
Intensity Mapping
Cross-correlations
Summary

1.Introduction

Tracing structure

- Universe filled with density fluctuations
- Structure only only visible through galaxies (distribution) and photons (weak lensing)
- Galaxies and photons here are functioning as test particles tracing out the gravitational field
- Most low-redshift surveys have not measured spectrum of density fluctuations
 - Much more sensitive to transfer functions
- Need very large volumes to measure primordial power spectrum and determine initial conditions (independently from CMB)

Radio cosmology era

- Most major results have come from CMB (continuous density field, high-redshift) and optical galaxy surveys (discrete density field, low-redshift)
 - Best cosmology experiment existing is still Planck, which is cosmic-variance limited at largest scales
- Radio (discrete and continuous density field, low- to mediumredshift) has lacked the number density to be a contender
 - Only 2 million extra-galactic radio sources currently known
- Radio has less of a problem with dust obscuration than optical, and observations can be faster

• Access to very large-scale information, e.g. cosmic dipole, primordial non-Gaussianity

 Next generation of radio telescopes will provide large-scale structure data that will be independent and complimentary to optical and CMB experiments

Radio Surveys

HI galaxy

Measures RA, Dec and redshift - Functions like an optical galaxy redshift survey

Can also measured peculiar velocities through Tully-Fisher relation

Continuum galaxy

- Measures RA, Dec, but not redshifts Angular clustering survey
- Cross-correlate with CMB and low-z sample for ISW and cosmic magnification

HI intensity mapping

- Measures RA, Dec, z, but no galaxies delocalised in angular space
- Can still use it like a spectroscopic survey (BAO & RSD) competitive with Euclid

Weak lensing shear

Shapes of continuum galaxies, need intensity mapping or similar for redshifts

Precursors

- Australian Square Kilometre Array Pathfinder (ASKAP) - SKA Survey
 - 36 12-metre antennas spread over a region 6 km in diameter
 - frequency band of 700–1800 MHz, with an instantaneous bandwidth of 300 MHz
 - FoV ~ 30deg², pointing accuracy > 30 arcsec
 - Angular resolution ~ 10 arcsec
- Murchison Widefield Array (MWA) SKA low
 - Tiles of 4x4 dipole antenna (150 MHz)
 - Core area has 50 antenna tiles uniformly distributed over a 100m diameter core, surrounded by 62 tiles, distributed over a 1.5 km diameter circle.
 - Drift-scan, FoV ~30 deg²
 - Angular resolution ~ 2-3 arcmin
- MeerKAT (Karoo Array Telescope) SKA mid
 - 64 13.5m dishes, with 48 concentrated in a 1km core
 - 580 MHz up to 1.65 GHz
 - Field of view ~ 1 deg²

Other experiments

- Canadian Hydrogen Intensity Mapping Experiment (CHIME)
 - Four 100 x 20 metre semi-cylinders, 400-800 MHz

Tianlai

- 3 (15x40m) cylinders, 400-800 MHz
- 16 (6m) dishes (800-1500 MHz)
- The Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX)
 - 1000 6-m dishes, 400-800 MHz

LOFAR

- Dipole antenna Low Band Antenna (LBA) 10-80 MHz and High Band Antenna (HBA) 120-240 MHz
- 24 core stations, 14 remote stations, and 12 international stations

The Tianlai Project – A Dark Energy Radio Observation Experiment

SKA

SKA-low built in Australia (MWA site)

- 100 stations, each containing 90 arrays of dipole antenna. Freq: 50-350 MHz
- SKA-mid built in South Africa (Karoo site)

• 200 dishes, 13.5m diameter. Freq: 350 MHz to 1.76 GHz

No SKA-survey as part of SKA-1

SKA timeline

Cosmology SWG

Chairs:

Richard Battye & Laura Wolz

Focus group coordinators:

- Intensity mapping (Santos & Wolz)
- Weak lensing (Brown & Harrison)
- HI galaxies (Bull & Maddox)
- Continuum (Jarvis & Parkinson)
- Joint probes (Bacon & Camera)
- SKA-LOW cosmology (Pourtsidou & Pritchard)
- Simulations (Alonso & Villaescusa-Navarro)

3. All-sky radio surveys a. Continuum

Cosmological Observables

- Angular correlation function of radio galaxies
- Cosmic Magnification of high-z radio galaxies by low-z optical foreground galaxies
- Cosmic Magnification of CMB by radio galaxies
 - Cross-correlation between radio density and CMB on small scales
- 4. Integrated Sachs-Wolfe effect
 - Cross-correlation between radio density and CMB on large scales

Image credit: Tamara Davis

Correlation functions

- All observables measured through correlations of objects
 - Angular power spectra = correlations of objects in the same bin
 - Magnification = correlations of objects in different bins, or objects with CMB
 - ISW = correlations of objects with CMB

$$C_{\ell}^{ij} = \frac{2}{\pi} \int W_{\ell}^{i}(K) W_{\ell}^{j}(k) P(k) k^{2} dk$$

• Need to understand the window function WI(k) of different populations $\int dN(z) dN(z)$

$$W_{\ell}(k) = \int j_{\ell}(kr)b(z) \frac{1}{dz} dr$$

- CMB Window function easy localised at zrec.
- Galaxy window function more difficult signal can be confused with number or bias evolution

Cosmic Magnification

 Measured density field has correction due to gravitational lensing magnification

$$\begin{split} &\delta_n = \delta_g + \delta_\mu \\ \bullet & \text{Effect takes the form} \\ & \text{of some 'magnification} \\ & \text{bias'} \\ & \delta_\mu(\theta, z_0) = (5s(z_0) - 2) \times \\ & \int_0^\infty dz \frac{c}{H(z)} g(z, z_0) \nabla_\perp^2 \phi(\chi(z)\theta, z_0) \end{split}$$

Image credit: Song Chen

Long-tail bin

- Large-area and deep surveys give access to largest scales (modes larger than k_{eq}), both in radial and tangential directions
 - Early universe (non-Gaussianity)
 - Dark energy/modified gravity
 - large-scale features (dipole/anisotropy)

Video credit: Glen Rees

Confusion noise and dynamic range

- Numerous unresolved faint extragalactic sources create "confusion" noise in sensitive survey images
- "Natural confusion" happens as the sources themselves start to overlap
- For SKA to operate at the confusion limit for continuum sources, a dynamic range of 73 dB is required (Condon 2009), but for a brighter, large area survey, D>63 dB is needed to avoid significant area loss.

EMU

- EMU (Evolutionary Map of the Universe) is an all-sky radio survey using ASKAP
 - 75% of the sky to declination +30°
- Frequency range: 1100-1400 MHz
 - Same as WALLABY, but EMU is continuum imaging, not 21cm spectroscopy
- 40 x deeper than NVSS
 - 10 µJy rms across the sky
- 5 x better angular resolution than NVSS (10 arcsec)
- Will detect and image ~70 million galaxies
 - All data to be processed in pipeline
 - Images, catalogues, cross-IDs, to be placed in public domain
- Survey starts end 2018
 - Early science has already started
- Total integration time: ~1.5 years

EMU early science

- Area: 2000 sq. degs
- Freq: 800-1100 MHz
- Limit: 100 uJy
- Time: 200 hours (60 pointings)

- Number density: 150 sources/deg2
- Region: 20<RA<5, -65<dec<-40</p>
- Good coverage of DES and SPT surveys

Radio Continuum Surveys: area vs. sensitivity

Image credit: Ray Norris

Observations

- Observations of the EMU early science cosmology region has already started
- Of the 68 ASKAP pointings, 16 integrations have been taken.
- Reduction of the data is still in the testing phase, as the ASKAPsoft data reduction pipeline (A2D output to images and catalogues) is still also being developed

Cosmology pipeline

- Full-sky Lognormal Astrofields Simulation Kit (Xavier et al 2016)
 - Assumes n(z) and takes correlation function as input
- Generate random catalogues, for testing data analysis & pipeline
- Use TreeCorr to measure angular correlation function
- Finally fit with boltzmann code

MeerKLASS

- MeerKLASS (MeerKAT Large Area Synoptic Survey) is an large area radio survey using MeerKAT
 - 4000 deg² in 4000 hours, over the DES region
- Frequency range: 900-1670 MHz (Lband)
- 80 x deeper than NVSS
 - 5.3 μJy rms across the region
- Similar angular resolution to NVSS (16 arcsec) for HI, better for continuum (interferometer)
- Will detect and image large number of sources, down to 5µJy (10 million galaxies)
- Not as fast or as wide as EMU, with worse angular resolution, but will produce redshifts (21cm)

SKA continuum surveys

Survey	Area (deg ²⁾	Flux-limit	Ν
NVSS	26,800	10 mJy	4×10 ⁵
EMU-early	2000	100 <i>µ</i> Ју	3.5×10 ⁵
MeerKLASS	4000	5 <i>µ</i> Jy	7.2×10 ⁸
EMU-full	30,000	10 <i>μ</i> Jy	7.2×10 ⁷
SKA-2	30,000	100 nJy	5.5 ×10 ⁹

b. Intensity Mapping

21cm physics

- 21cm intensity mapping is an accurate redshift, but delocalised in sky position
- Can be used to measure BAO and RSD
- Very weak signal, can be swamped by foregrounds
 - Large dynamic range needed, as foregrounds ~10³ x signal
- Need to minimise spectral structure from bandpass cal. uncertainties
 - Also: Need accurate model of (polarised) beam sidelobes
 - RFI from satellites is a pain

HI surveys

HISurveys

Name	Redshift range	Number of sources	Area (sq deg)	Hemisphere	Start date
WALLABY	0-0.26	500,000	30,000	south	2018
DINGO	0-0.43		150	south	2018
CHIME	0.8-2.5		30,000	north	2017
MeerKLASS	0-0.58 (L) 0.4-1.5 (UHF)	100,000	4000	south	2019
BINGO	0.13-0.48		2000	north	2019
HIRAX	0.8-2.5		15,000	south	
SKA – stage 1	0-0.5	10M	5000	south	2025
SKA – stage 2	0-2	900M	30,000	south	?

4. Cross-correlations

Cross-correlations

- Almost all LSS probes are systematic limited
- Combinations can remove systematics, as well as providing new cosmological tests
- Multi-tracer: Cross-correlating galaxy populations with different bias allows some quantities to be measured without cosmic variance
- Cross-correlating continuum/ IM with large-area optical/IR (e.g. LSST) can improve measurement of primordial nonGaussianity/GR effects

EMU & DES

- Improves the cosmology we can do
 - Cosmic magnification require cross-correlation between bins (i.e. two radio bins, high-z radio with low-z optical, high-z CMB with 'low redshift' radio sources)
 - ISW requires CMB information
- Improves our redshift estimates
 - Clustering redshifts, and photo-z information from optical/NIR counterparts
 - DES will provide photo-z information, to split the EMU sample into redshift bins

Magnification

Tianlai & DESI

Getting past foregrounds

- Brightness temperature signal weak, and delocalized in angular position
- Cross-correlation enhances HI signal, allowing for better determination of power spectra
- Cross-correlation at low redshift (ELGs, LRGS)
 - Dipole (Hall and Bonvin, 2017)
- Cross-correlation at highredshift (LBGs)
 - 21cm detection, 21cm bias (Villaescusa-Navarro et al 2014)

Summary

- The next generation of radio surveys will make deep surveys over a wide area, approaching their confusion limit
 - Number of detected extra-galactic radio sources will increase to > 10⁸
 - HI intensity mapping will be possible over a wide area
- Large dynamic range needed, to detect faint anisotropies
 - data processing issue
- Cross-correlation, with optical/IR data, will increase the detection and utility of the anisotropic map
 - Cosmic magnification
 - Large-scale non-Gaussianity/GR effects

This is a good time to be involved in large radio projects!

Extra: Simulations

Dark Energy

Image credit: Jose Luis Bernal

Non-Gaussianity

