A preshower for ALP searches at NA62-dump

T. Spadaro

Search for visible decays of ALP's to $\gamma\gamma$

Assume 10¹⁸ 400-GeV POT :

Study ALP Primakoff production [JHEP 1602 (2016) 018] from interaction onto TAX search for ALP-decay to yy in NA62 fiducial volume, account for geometrical acceptance assume zero-background, evaluate expected 90%-CL exclusion plot

PBC WG Meeting - CERN - T. Spadaro

On the zero-background assumption

- Present analysis: signal identification based on the peculiar angular distribution of emitted axions (Primakoff cross section)
- Only variables measured: Etot, θ of photon barycenter

On the zero-background assumption

- Analysis under completion at ~ 10¹⁶ POT with 2016-17 data
- Background measured in Etot, θ sidebands
- Seems under control at the above intensity...

.. need better bkg rejection @ 10¹⁸ POT

- The idea: exploit the budget of dead material already present in NA62
- Track e+ e- pairs from photon conversions using two low-Z pixel detector planes

Pre-shower concept:

radiator, ~1 X0 placed at the RICH flange, z = 237.253 m

sensitive planes starting 1.8 m downstream, 0.5 m apart: z = 239 m and z = 239.5 m

pixel space resolution: Δ = 100 μ m

plane transverse coverage as the LKr \rightarrow O(10) k channels, not to be read invidually

ALP simulation with preshower

- Toy MC using Primakoff emission of ALP's
- Simulate photon pair production in 1 X0 (Bethe-Heitler)
 - Simulate e+ / e- possible unbalance
 - Assume e+ / e- collinear emission
- Simulate e+, e- multiple Coulomb scattering in passive material
- Reconstruct position per plane by averaging multiple hits \rightarrow Photon direction

ALP simulation with preshower

- Toy MC using Primakoff emission of ALP's
- Simulate photon pair production in 1 X0 (Bethe-Heitler)
 - Simulate e+ / e- possible unbalance
 - Assume e+ / e- collinear emission
- Simulate e+, e- multiple Coulomb scattering in passive material
- Assume SigmaE/E = 3%/Sqrt(E[GeV]) from LKr per photon \rightarrow Invariant mass
 - bias for low masses (small opening angles)

ALP simulation with preshower

- Toy MC using Primakoff emission of ALP's
- Simulate photon pair production in 1 X0 (Bethe-Heitler)
 - Simulate e+ / e- possible unbalance
 - Assume e+ / e- collinear emission
- Simulate e+, e- multiple Coulomb scattering in passive material
- Track reconstructed directions to mutual minimum approach \rightarrow Vertex

Conclusions

- Two planes providing 100 μm resolution in x and y placed 1.8 m downstream the RICH flange provide:
 - 200 μ rad angle resolution at 1 GeV ALP mass
 - 20 MeV invariant mass resolution in the entire mass range
 - vertex z position with 2 m resolution at 1 GeV ALP mass
 - 3 cm γ - γ closest approach at the vertex
- The above performance would surely improve the background rejection by order of magnitudes, allowing the 0 background scenario to be reached at 10¹⁸ POT's
- The proposed detector might be constructed with a variety of technologies: micromegas, GEM's, etc.
 - Number of channels of the order of 10k → need smart readout system (only read channels nearby newCHOD hits)
- Operation of the proposed detector might help other beam-based analyses
 - This point has to be better studies
- The exact design is under discussion, with the goal of defining a project:
 - financially sustainable
 - feasible with limited manpower
 - synergic with expertise available in the INFN structures involved