Momentum considerations

RECAP:

- A maximum miscalibration of 4.5×10^{-5} *Ebeam (=6 MeV) can be tolered (to have 10^{-5} on σ)
- The energy is reconstructed by solving the relation $E\mu=2me/\theta^2$. For E=150 GeV this equation gives $\theta=2.5$ mrad for which $E_e=E\mu'=75$ GeV.
- $\sigma_{\rm E}/{\rm E}=4.5 \times 10^{-5} \rightarrow \sigma_{\theta}/\theta^{\sim}2 \times 10^{-5}$ which at $\theta=2.5$ mrad gives 5×10^{-5} mrad
- At these energies on 1 cm Be σ_{θ} =0.02_{MS} \oplus 0.02_{Det} ~0.035 mrad. To reach 5x10⁻⁵ mrad on $\sigma_{<\theta>}$ we need to improve a factor 1000 i.e. collect 10⁶ events ($\sigma_{<\theta>}\sigma_{\theta}/\sqrt{N}$)
- ds/dθ(2mrad)~1µb/mrad. By assuming a bin width=0.1 mrad→~100nb. By multypling for the flux expected with 1 cm Be f = 0.4/60nb⁻¹s⁻¹ [passera] the number of expected rate is 0.7s⁻¹. Therefore a measurement of the average beam momentum at the required statistical accuracy of 10⁶ can be obtained in ~10⁶ sec=2 weeks

Momentum considerations II

Of course the systematics are the major point. We need to control the angle at 5x10⁻⁵ mrad which needs a precise alignment using muons of the beams and other methods... Here I discuss a possible way to intercalibrate the different units.:

- The energy loss in 1 cm Be is: 1.6 [MeV/g*cm2]*1.85[g/cm3]*1cm=3 MeV. Let's add 2mm Si (=6 layers)=0.8 MeV→ 4 MeV.
- If we assume to know this accuracy at 10% level it it gives a negligible error. Two adiacent modules should see the same energy! In this way we can intercalibrate the modules amongt them (of course we cannot correct for global misalignment/ miscalibration/mistakes).
- It becames a math problem where we have n (60) measurements of E and (n-1) constraints

Momentum measurement

- The measurement of the momentum at 4.5x10⁻⁵ is not trivial. As I said this means to reach an accuracy $\sigma_{\theta}/\theta^{2}x10^{-5}$ which must compare with $\sigma_{\theta/\theta}^{2}10^{-2}$ (0.035 mrad) at 2 mrad.
- The following setup could help to improve the measurement of the angle: essentially we can think to put a thin Be target of 100µm separated by 10 m from the Si detector before our apparatus. In this way we can improve 10x the resolution ($\sigma_{\theta/}$ $_{\theta}$ ~10⁻³ (0.0035 mrad) or 10⁴ events to reach σ_{θ}/θ ~2x10⁻⁵. Of course the cross section becomes 1/100 lower but we can avoid the non gaussian MS effects. In particular in one year we could have a very precise measurement. The separation in the transverse plane after 10m will be 2 cm

2018 Work plan: a feasibility study on a_{μ}^{HLO} at 10-20%?

- With 60cm Be and 4×10^7 s we will get an accuracy of 0.3%.
- Let's assume 1 week with 2 modules and 0.5 duty cycle:
 - 2 cm Be
 - 7 days*0.5 duty cycle=3.5 days=3x10⁵ sec
- So the stat accuracy would be:
- 0.003*sqrt($60x4x10^{7}/(2x3x10^{5})$)=0.003*63=0.2
- \rightarrow Measurement with 20% stat error seems possible
- 1 Month would give us 10%!

2018 Work plan: Test Beam for MS study?

- We should demostrate to control MS at 1% level
- TB with e- at few GeV (at CERN/SLAC)?
- TB in Frascati with 0.5 GeV (possibility to study the tail)?
- Possible? When?