MUonE: Theory Update

Massimo Passera INFN Padova

MUonE meeting
Pisa
29-30 January 2018

 The SM prediction for mu-e scattering must be known with an accuracy of 10 ppm → a full NNLO QED MC generator is needed!

$$a_{\mu}^{\rm HLO} = \frac{\alpha}{\pi} \int_0^1 dx \, (1-x) \Delta \alpha_{\rm had}[t(x)] \qquad \qquad \mu$$
 Hadrons
$$t(x) = \frac{x^2 m_{\mu}^2}{x-1} < 0$$

NLO QED corrections known & checked.

- An NLO MC generator with full mass dependence has already been developed by the Pavia group. It's ready & double-checked!
- EW NLO corrections are also in the pipeline (Pavia group).

- The NNLO QED corrections to μe scattering are unknown.
- State-of-the-art methods required to calculate the 2-loop diagrams.
- First results in 2017 for the 2-loop box diagrams (Padova group):

Mastrolia, MP, Primo & Schubert, JHEP 1711 (2017) 198

- Work in progress for the non planar diagrams (Padova group).
- Then build an amplitude, add real emission, subtractions, etc etc...
 It's a long way to go! Many theorists are joining the effort.

The NLO hadronic contributions must be subtracted. They're unknown.

- Calculation in progress (M. Fael + Padova group). Two alternatives:
 - Traditional calculation via dispersive approach. Uses timelike data.
 - Hyperspherical approach (Gegenbauer polynomials technique).
- The hadronic light-by-light contributions do not appear at NLO!! W

Muon-electron scattering: NP sensitivity?

• Possible contributions to the μe scattering cross section of heavy spin-0 or 1 mediators at a scale Λ can be described via an effective Lagrangian if $\Lambda^2 \gg |\mathbf{q}|^2 \sim (1\text{GeV})^2$ (Padova group).

$$\mathcal{L}_{H} = \sum_{i=S,P,V,A} G_{i} \left(\bar{\psi}_{e} \Gamma_{i} \psi_{e} \right) \left(\bar{\psi}_{\mu} \Gamma_{i} \psi_{\mu} \right) + \text{h.c.} \longrightarrow \frac{d\sigma}{dt} = \frac{d\sigma_{\text{QED}}}{dt} \left[1 + \sum_{i} \delta_{i}(s,t) \right]$$

To probe these effects with a given experimental sensitivity, the values of G_i should be sufficiently large. Is perturbative unitarity respected?

Theory MUonE on Wiki

Main page
Contents
Featured content
Current events
Random article
Donate to Wikipedia
Wikipedia store

Interaction

Help

About Wikipedia Community portal Recent changes

Contact page

Tools

What links here Related changes User contributions

Logs

Email this user

View user groups Upload file

Special pages

Permanent link

Page information

User:Mpassera/MUonE Theory

From Wikipedia, the free encyclopedia

< User:Mpassera

This page aims at describing the theoretical aspects of muon-electron scattering and, in particular, the theoretical studies of the MUonE project at CERN. This is only a very preliminary set-up, to be improved in the near future.

The theory required for the MUonE project is being developed along six main lines of research:

- 1. Monte Carlo for QED at NLO, full mass dependence;
- 2. Electroweak corrections at NLO;
- 3. QED corrections at NNLO: Master integrals;
- 4. QED corrections at NNLO: Amplitudes;
- 5. Hadronic corrections at NLO;
- 6. Physics Beyond the Standard Model.

Here is a link to a recent review of the theory status.^[1]

Links to dedicated theory workshops: Padova 2017 ₽, Mainz 2018 ₽.

1. ^ MUonE Meeting, Bologna, 14-15 december 2017 link

This page was last edited on 29 January 2018, at 11:46.

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

Privacy policy About Wikipedia Disclaimers Contact Wikipedia Developers Cookie statement Mobile view

https://en.wikipedia.org/wiki/User:mpassera/MUonE_Theory

Feb 2018: MITP workshop in Mainz

mitp

Mainz Institute for Theoretical Physics

SCIENTIFIC PROGRAMS

Probing Physics Beyond SM with Precision

Ansgar Denner **u** würzburg, Stefan Dittmaier **u** Freiburg, Tilman Plehn **u** Heidelberg

February 26-March 9, 2018

Bridging the Standard Model to New Physics with the Parity Violation Program at MESA

Jens Erler unam, Mikhail Gorshteyn, Hubert Spiesberger JGU April 23-May 4, 2018

Modern Techniques for CFT and AdS

Bartlomiej Czech IAS Princeton, Michal P. Heller MPI for Gravitational Physics, Alessandro Vichi EPFL May 28-June 8, 2018

an 20-30 2018 Gravitational Wave Science

Rafael A. Porto ICTP-SAIFR. Riccardo Sturani IIP Natal.

TOPICAL WORKSHOPS

The Evaluation of the Leading Hadronic Contribution to the muon anomalous magnetic moment

Massimo Passera INFN Padua, Luca Trentadue U Parma, Carlo Carloni Calame INFN Pavia Graziano Venanzoni INFN Frascati February 19-23, 2018

Challenges in Semileptonic B Decays

Paolo Gambino u Turin, Andreas Kronfeld Fermilab, Marcello Rotondo INFN-LNF Frascati, Christof Schwanda oewa Vienna

April 16-20, 2018

May 14-18, 2018

Tension in LCDM Paradigm
Cora Dvorkin u Harvard, Silvia Galli IAP Paris,
Fabio locco ICTP-SAIFR, Federico Marinacci MIT

2018

Feb 2018: MITP workshop in Mainz (2)

MITP Topical Workshop / February 19 – 23, 2018

indico.mitp.uni-mainz.de/e/MUonE

- ★ 30+ participants.
- → Monday
 - General opening on the muon g-2 (Jegerlehner, Eidelman);
 MUonE project (Passera, Venanzoni); Lattice overview (Marinkovic);
 QED NNLO Amplitudes (Signer, Ossola, Broggio, Torres, Greiner, ...)
- → Tuesday
 - QED NNLO Master Integrals (Primo, Laporta, ...);
 Monte Carlos Theory (Czyż, Alacevich, Carloni Calame, Montagna, Piccinini)
- → Wednesday
 - Experimental day: Bernhard, Brizzolari, Ignatov, Ivantchenko, Keshavarzi, Marconi, Matteuzzi, Mersi, Tenchini, Venanzoni, ...
- → Thursday
 - Hadronic corrections, BSM and more (Fael, Hagelstein, Knecht, Nesterenko, Pruna, Szafron, ...)
- → Friday (morning)
 - Workshop summary: outlook & future work (Trentadue)

(The names of the speakers are only tentative)

The End

M. Passera Pisa Jan 29-30 2018