

Thin Silicon detectors

MUonE meeting

A. Messineo, Università & INFN sez. di Pisa

- Introduction: segmented devices
- Wafers options for a reduced material budget
- Application on Strip/Pixel devices*
 - Geometry
 - Technology
 - Design rules constraints

*(focusing on today existing devices)

Strip Detector: Single sided device

- Pros:
 - Single sided technology: simpler, high production efficiency, cheaper.
 - Simple bias/readout scheme
 - Some freedom on the thickness value
 - Cons:
 - One coordinate measurement per silicon layer

30/01/18

A. Messineo Università & INFN - Pisa

- Thin Silicon wafer (~300 μm) with implanted strips (e.g. p⁺ in n-bulk).
- Each implant is connected to a readout electronics channel.
- Through going charged particles generate electron-hole pairs.
- Electron-hole pairs drift in electric field.

From the signals measured by the electronics the position of the particle can be deduced to a <u>few micrometer precision</u>.

Reconstruction of particles track.

- Sensitive volume (Sensor) far from the read-out electronics (readout chip + Hybrid)
- Detector cooling located underneath the Hybrid
 - Read-out circuitry dissipated the total power
 - Sensor (large area ~10 X 7 cm²) in thermal equilibrium with surrounding gas

Strip Detector: double sided device

- AC coupled Silicon sensors with integrated bias resistors: SiO₂ layer forms integrated capacitors. Bias resistors realised with polysilicon structures or transistor devices (punch through).
- Double sided Silicon sensors: Backside implant structured, allows dimension measurement with one sensor → very sophisticated production Poly imid
- Double metal layers: 2nd metal layer to route signal from strips to electronics.

• Pros:

Double sided, AC coupled sensor with double metal layer

- two coordinates in one silicon layer
- Cons:
 - Double sided technology: more processing steps (increase cost)
 - bit more complicate bias/readout scheme
 - Typical thickness ~250-320 $\,\mu\text{m}$, difficult to start from thinner wafers and cannot be thinned after processing

A. Messineo Università & INFN - Pisa

- The SVD, consists of four layers of DSSD sensors *
 - Thickness: 300 or 320 μm
 - Two coordinates per Si layer, max area ~12 X 6 cm² (6-inch wafer)
 - excellent spatial (~ 20μm)
- The sensors are supported by carbon fiber reinforced ribs with AIREX core to decrease material budget.

* Hamamatsu Photonics (Japan) and Micron Semiconductor (UK)

- Material budget:
 - Silicon sensor
 - Kapton circuits
 - Mechanical support
 - cooling

i.e. LHCb

• VeLo LHCb

Fig. 2. Schematic diagram of the VELO sensor lay-outs (left: ϕ -measuring sensor, right: *R*-measuring sensor).

- 1. "native" thin Float-zone wafer
 - Safe configuration: 6-inch wafer 200 μm thick
 - Hamamatsu is providing such a sensors, processed as single sided device, for the CMS tracker upgrade
 - » Thin implies single sided processing
- 2. "standard" thick Float-zone wafer
 - Typical thickness of 300-320 μm on 6-inch (on 8-inch) wafer
 - Thinning by mechanical grinding and/or chemical etching of the back side (after front side processing)
 - Minimum thickness limited by the "post thinning" processing steps on the back side:
 - High dose ohmic implant + metal sputtering
 - » Only single sided device

- PAE Silcon Material Silcon Material Typical material: Float Zone high resistivity Junction depleted at low bias Typical material: Czochralski low resistivity Cochralski low resistivity
- Active Thickness (Si-AT): primary charge generation
- Total thickness (Si-TT): material budget
 - Single sided device

on

on

20

Wafer options in small material budget

Such raw mate technologies:

- e made available by using two
- a. Si-Si Direct Wafer Bond: starting from two single wafers, no constraint on the active thickness
 - i. Si-Si DWB: common wafers interface melting
 - Active thickness electrically accessible from back side

- Active thickness not sharply defined:
 - Doping concentration profile measurement: effective thickness reduced by the Boron diffusion (for SiSi) from wafer carrier deep about 10 μm.

30/01/18

- Such raw material can be made available by using two technologies:
 - a. Starting from two single wafers: no constraint on the active thickness
 - i. Si-Si Direct wafer bond: common wafers interface melting
 - Active thickness electrically accessible from back side
 - ii. SOI: no melting at Si-Oxide interface
 - Active thickness well defined, however electrically isolated, solution as trench needed

Such raw material can be made available by using two technologies:

Wafer options for small material budget

- a. Starting from separate wafers: no constraint on active thickness
 - Si-Si Direct wafer bond: common wafers interface melting
 - Active thickness electrically accessible from back side
 - SOI: no melting at Si-Oxide interface
 - Active thickness electrically isolated, solution as trench needed
- b. Epitaxial layer on handle wafer
 - small thickness available (< 100 μ m) given the slow growth speed
 - Active thickness electrically accessible from back side
 - Constraint on wafer size
- For both (a. and b.) technologies:
 - Processing of single sided device
 - No high dose ohmic implant needed on the back side
 - Metal sputtering for uniform electrical contact after thinning

- Silicon Material budget :
 - X_0 value: 21.82 g cm⁻² or 9.37 cm
 - 300 μ m corresponds to 0.32% X₀
- Thinning is a solution in order to decrease material budget
 - However there are implication on
 - Design rules
 - Devices technology
 - Wafer size and detector area
 - Manufacturer
 - Detector assembly steps
 - » Consider also mechanical support and services in the material budget.

Figure 31.9: Most probable energy loss in silicon, scaled to the mean loss of a minimum ionizing particle, 388 eV/ μ m (1.66 MeV g⁻¹cm²).

i.e. charge on thin hybrid pixel sensors (CMS)

Averaging over full sample the Ratio MPV@130um / MPV@100 is ~1.38 , expected [1.2-1.44] Detector material budget: silicon sensor 0.16 - 0.19 % X₀ + ROC 0.186 % X₀

A. Messineo Università & INFN - Pisa

Thin Silicon Strip sensor: design rules

- Detector performance provided by the S/N ratio (SNR)
 - SNR affects:
 - Track detection efficiency
 - » SNR > 10-12 for a good detection efficiency
 - Point resolution σ = pitch/SNR (charge sharing)
 - SNR ingredients:
 - 1. Signal S given by the collected charge
 - Depends on Si-AT, ionization charges (e-h) pairs
 - 2. Noise N given by C load and Read-Out speed
 - Depends on Si-AT
 - Segmentation geometry
 - width/pitch ratio ~ 0.25, compromise between:
 - high width/pitch ratio that reduces the field peak located at the p⁺ edge
 - low value that reduces the total strip capacitance
 - strip length
 - i.e. noise parameterization for APV25 readout, fast shaping time
 - noise(e) = (427 ± 39) + (38.7 ± 3.0) x strip length (cm)

i.e. CMS Silicon Strip sensor

- Cluster charge vs track incident angle:
 - Minimum size 1.2 strip (pitch = $80 \mu m$)
 - Strip length ~10 cm

- i.e. CMS tracker silicon strip
 - 320 μm Si-AT
 - Strip geometry
 - Pitch 121 μm, w/p=0.25
 - length ~10 cm, width ~6 cm

- Strip sharing increases with inter-strip coupling
 - Electrodes capacitance sensitive to design (pitch and width)
 - Blue 3%, Red 7%

A. Messineo Università & INFN - Pisa

Thinner Si-AT implies less charge and shorter strips

A large area sensor is divided in two half readout independently

- Sensor width defined by
 - Read-Out chip pitch
 - Number of chip managed by the hybrid circuitry

*Hamamatsu

4

Pixel detectors: hybrid design. i.e. CMS BPIX

"three-side-buttonable" chips ~200µr gaps defector

200 µm thick: support and cooling

- Total amount of silicon can be kept below 0.32% X₀ per station
 - Two coordinates measurement per layer
 - sensor thickness of 200 μm good compromise between
 - minimum material budget
 - fast charge collection
 - signal large enough for the electronics chain.
 - Pixel size/pitch 300 X 300 μm^2
 - The silicon on the ROC chip side thinned down to 100 $\mu m.$
 - Cooling and support by a single 125 μm thick carbon fiber structure, corresponding to about 0.06% X₀
- Module size defined by the ROC technology

20

INFN

2

i.e. thin Pixel detectors ILC/Belle2

- The basic building block of the Belle II PXD is a DEPFET module
 - sensor matrix with 250 columns and 768 rows
 - Pixel size in the inner layer r– $\varphi\,$ is 50 μm X 55 μm
- A module is fabricated on special SOI silicon wafer, which allows a thinning of the sensitive area to 75μm.
 - Si-AT not relevant here for ionization charge (e-h) pair generation

Fig. 1. The MOS-type DEPFET.

2

Table 1

Comparison between the requirements of ILC and the baseline design for SuperKEKB.

Parameter	ILC	SuperKEKB
Number of layers Number of pixels (inner laver)	5 512 × 4096	2 215 × 1024
Pixel size Material budget Ionizing radiation Row processing time	25 × 25 μm ² 0.1%X ₀ 10–50 kRad/a 20–50 ns (two-fold readout)	50 × 75 μm ² 0.1–0.15%X ₀ ~1 MRad/a ~100 ns (four-fold readout)
Frame time	25–50 µs (inner layer)	10–20 μs

 Including the frame and the SWITCHER chips the average radiation length of a module within the Belle II acceptance is only 0.21% X₀

Fig. 2. View of an outer module of the Belle II silicon pixel detector. Shown is a real sensor module with all ASICs and SMD components. The total length of this module is 8.5 cm and its width is 1.2 cm.

