Muon-electron scattering at NLO in QED

C.M. Carloni Calame

INFN Pavia, Italy

MUonE meeting

Pisa, January 29-30, 2018

with M. Alacevich, M. Chiesa, G. Montagna, O. Nicrosini, F. Piccinini

- · Relevant literature:
 - * G. Abbiendi et al.,

Measuring the leading hadronic contribution to the muon g-2 via μe scattering Eur. Phys. J. C **77** (2017) no.3, 139 - arXiv:1609.08987 [hep-ex]

- C. M. Carloni Calame, M. Passera, L. Trentadue and G. Venanzoni, *A new approach to evaluate the leading hadronic corrections to the muon g-2* Phys. Lett. B **746** (2015) 325 - arXiv:1504.02228 [hep-ph]
- → G. Balossini, C. M. Carloni Calame, G. Montagna, O. Nicrosini and F. Piccinini, Matching perturbative and parton shower corrections to Bhabha process at flavour factories Nucl. Phys. B **758** (2006) 227 - hep-ph/0607181
- → M. Cacciari, G. Montagna, O. Nicrosini and F. Piccinini, SABSPV: A Monte Carlo integrator for small angle Bhabha scattering Comput. Phys. Commun. 90 (1995) 301 - hep-ph/9507245

New perspective: $\mu e ightarrow \mu e$ scattering in fixed target experiment

 \mapsto A 150 GeV high-intensity (~1.3×10⁷ μ 's/s) muon beam is available at CERN NA

 \mapsto Muon scattering on a low-Z target ($\mu e \rightarrow \mu e$) looks an ideal process

 \star it is a pure *t*-channel process \rightarrow

$$\frac{d\sigma}{dt} = \frac{d\sigma_0}{dt} \left| \frac{\alpha(t)}{\alpha} \right|^2$$

 \star Assuming a 150 GeV incident μ beam we have

 $s \simeq 0.164 \text{ GeV}^2$ $-0.143 \lesssim t < 0 \text{ GeV}^2$ $0 < x \lesssim 0.93$ it spans the peak!

Benefits:

- \star the highly boosted kinematics allows to access a wide angular range in the CM
- the same detector can be exploited for signal and normalization
- * the same process is used for signal and normalization: the region $x \leq 0.3$, where $\Delta \alpha_{had}(t) < 10^{-5}$, can be used for normalization

μe scattering kinematics for leading order (2 ightarrow 2, elastic process)

p_1, p_2 initial state μ and e				p_3, p_4 final state μ and e			<u>d</u> e
In the lab			In the center of mass				
	p_1	=	$(E^{beam}_{\mu},0,0,p)$		p_1	=	$(E_{CM}^{\mu}, 0, 0, p_{CM})$
	p_2	=	$(m_e,0,0,0)$		p_2	=	$\left(E^{e}_{CM},0,0,-p_{CM}\right)$
	p_3	=	$p_1 + p_2 - p_4$		p_3	=	$(E_{CM}^{\mu}, p_{CM}\sin\theta, 0, p_{CM}\cos\theta)$
	p_4	=	$(E_e, p_e \sin \theta_e, 0, p_e)$	$\cos \theta_e)$	p_4	=	$(E_{CM}^e, -p_{CM}\sin\theta, 0, -p_{CM}\cos\theta)$

Invariants:

$$s = (p_1 + p_2)^2 = (p_3 + p_4)^2$$

= $m_e^2 + m_\mu^2 + 2E_{CM}^\mu E_{CM}^e + 2p_{CM}^2$
= $m_e^2 + m_\mu^2 + 2E_\mu^{beam} m_e$

$$\begin{split} p_{CM} &= \frac{1}{2} \sqrt{\frac{\lambda(s,m_{\mu}^2,m_e^2)}{s}} \\ t &= m_{\mu}^2 \frac{x^2}{x-1} \propto E_e \end{split}$$

$$= (E_{CM}^{e}, -p_{CM}\sin\theta, 0, -p_{CM}\cos\theta)$$
$$t = (p_1 - p_3)^2 = (p_2 - p_4)^2$$

$$t = (p_1 - p_3)^2 = (p_2 - p_4)^2$$

= $-2p_{CM}^2(1 - \cos \theta)$
= $2m_e^2 - 2E_e m_e$

$$\begin{split} E_e &= m_e \frac{1 + r^2 \cos^2 \theta_e}{1 - r^2 \cos^2 \theta_e} \\ r &\equiv \frac{\sqrt{\left(E_{\mu}^{beam}\right)^2 - m_{\mu}^2}}{E_{\mu}^{beam} + m_e} \end{split}$$

- The μe cross section and distributions must be known as precisely as possible \mapsto radiative corrections (RCs) are mandatory
- ★ First step are QED $O(\alpha)$ (i.e. QED NLO, next-to-leading order) RCs

The NLO cross section is split into two contributions,

 $\sigma_{NLO} = \sigma_{2\to 2} + \sigma_{2\to 3} = \sigma_{\mu e \to \mu e} + \sigma_{\mu e \to \mu e\gamma}$

 $\label{eq:linear_state} \begin{array}{l} \longmapsto \mbox{ IR singularities are regularized with a vanishingly small photon mass λ} \\ \longmapsto \mbox{ } [2 \rightarrow 2]/[2 \rightarrow 3] \mbox{ phase space splitting at an arbitrarily small γ-energy cutoff ω_s} \\ \bullet \mbox{ } \mu e \rightarrow \mu e \end{array}$

$$\sigma_{2\to 2} = \sigma_{LO} + \sigma_{NLO}^{virtual} = \frac{1}{F} \int d\Phi_2 (|\mathcal{A}_{LO}|^2 + 2\Re[\mathcal{A}_{LO}^* \times \mathcal{A}_{NLO}^{virtual}(\boldsymbol{\lambda})])$$

• $\mu e \rightarrow \mu e \gamma$

$$\sigma_{2\to3} = \frac{1}{F} \int_{\omega>\lambda} d\Phi_3 |\mathcal{A}_{NLO}^{1\gamma}|^2 = \frac{1}{F} \left(\int_{\lambda<\omega<\omega_s} d\Phi_3 |\mathcal{A}_{NLO}^{1\gamma}|^2 + \int_{\omega>\omega_s} d\Phi_3 |\mathcal{A}_{NLO}^{1\gamma}|^2 \right)$$
$$= \Delta_s(\lambda, \omega_s) \int d\sigma_{LO} + \frac{1}{F} \int_{\omega>\omega_s} d\Phi_3 |\mathcal{A}_{NLO}^{1\gamma}|^2$$

 the integration over the 2/3-particles phase space is done with MC techniques and fully-exclusive events are generated

LO and NLO vacuum polarization diagrams

NLO virtual diagrams $\mathcal{A}_{NLO}^{virtual}$ (dependent on λ)

+ counterterms

C.M. Carloni Calame (INFN, Pavia)

NLO real diagrams $\mathcal{A}_{NLO}^{1\gamma}$

Method and cross-checks

- · Calculation performed in the on-shell renormalization scheme
- · Full mass dependency kept everywhere, fermions' helicities kept explicit
- Diagrams manipulated with the help of FORM, independently by at least two of us [perfect agreement]
 J. Vermaseren, https://www.nikhef.nl/~form
- 1-loop tensor coefficients and scalar 2-3-4 points functions evaluated with LoopTools and Collier libraries
 [perfect agreement]
 T. Hahn, http://www.feynarts.de/looptools

A. Denner, S. Dittmaier, L. Hofer, https://collier.hepforge.org

- UV finiteness and λ independence verified with high numerical accuracy
- 3 body phase-space cross-checked with 3 independent implementations [perfect agreement]
- · Comparison with past/present independent results [in progress, all good so far]

P. Van Nieuwenhuizen, Nucl. Phys. B 28 (1971) 429 T. V. Kukhto, N. M. Shumeiko and S. I. Timoshin, J. Phys. G 13 (1987) 725 D. Y. Bardin and L. Kalinovskaya, DESY-97-230, hep-ph/9712310

N. Kaiser, J. Phys. G 37 (2010) 115005

Fael, Passera et al.

Further cross-checks and (simple) simulation setup

- Good agreement with NLO Bhabha (only *t*-channel diagrams) if $m_{\mu} \rightarrow m_e$ as implemented in **BabaYaga@NLO** (within known approximations)
- Everything calculated in the center-of-mass frame, and boosted in the lab if needed
- Implemented in a MC event generator (temporary extension of BabaYaga@NLO)
- ω_s independence

 $\sigma_{LO} = 245.039062 \ \mu b$

 $\sigma_{NLO}(\omega_s = 5 \cdot 10^{-5} \times \sqrt{s} \equiv \omega_1) = 244.3957 \pm .0005 \ \mu b$ $\sigma_{NLO}(\omega_s = 1 \cdot 10^{-6} \times \sqrt{s} = \omega_1/50) = 244.3948 \pm .0007 \ \mu b$

- \star Simulation setup for $\mu^-e^- o \mu^-e^ (\gamma)$
 - $E_{\mu}^{beam} = 150 \text{ GeV} \rightarrow \sqrt{s} \simeq 0.4055 \text{ GeV}$
 - $t_{min} = -\lambda(s, m_{\mu}^2, m_e^2)/s \simeq -0.1429 \text{ GeV}^2$
 - $t_{max} \simeq -1.021 \cdot 10^{-3} \text{ GeV}^2$ (i.e. $E_e > 1 \text{ GeV}$ in the lab)
 - \mapsto Cuts: $t_{min} \leq t_{24} \leq t_{max}$

 $t_{min} < t_{13} < t_{max}$

μ -e angle correlation in the lab

• NA7 cut: $D\theta \simeq$ distance in the θ_{μ} - θ_{e} plane < 0.25 mrad

NA7 collaboration, NPB 277, 168 (1986)

C.M. Carloni Calame (INFN, Pavia)

E_e distribution and corrections in the lab

$heta_e$ distribution and corrections in the lab

E_{μ} distribution and corrections in the lab

θ_{μ} distribution and corrections in the lab

- (At least) one working QED NLO calculation is available in an event generator for our μe proposal
- * The size of QED NLO RCs on the considered observables lies in the 1-5% range (except in the low θ_e and θ_{μ} distributions), within the loose cuts applied here
- * The size of QED NLO RCs strongly depends on the applied cuts
- The "Bhabha experience" at LEP & flavour factories compels to include also higher-orders (h.o., beyond NLO) RCs to reach high theoretical accuracy
- Exact NNLO corrections are needed to reduce the theoretical uncertainty at the required level
- A QED Parton Shower approach (matched to NLO) could be used to resum h.o. (multiple-photon emission effects) preserving fully exclusive generation
 - → needs to be re-thought for the inclusion of (muon) mass effects
 - \mapsto needs to be extended to be matched to exact NNLO corrections
- ★ A lot of work is in progress, i.e. study of the impact of the full NLO <u>electro-weak</u> RCs