Muon reconstruction and identification in the ATLAS experiment at LHC

Damiano Vannicola

Istituto Nazionale di Fisica Nucleare

The ATLAS detector

- Inner Detector (ID)
 - Pixel
 - SCT
 - TRT
- Inner solenoid
- Elettromagnetic
 Calorimeter
 (LAr)
- Hadronic Calorimeter (Tile)
- External toroids
- Muon Spectrometer

Muon Spectrometer (MS)

Physics with muon

 $P_t \sim 50 \; GeV$

•
$$J/\psi \rightarrow \mu\mu \implies P_t \sim 5 - 20 \ GeV$$

- Precision EW measures
- Higgs Physics
- BSM searches \longrightarrow $P_t \sim 1 3 TeV$

Target:

 Robust muon reconstruction for different pT regions

 High efficiency and purity, excellent resolution and momentum scale

Muon Reconstruction -I

Steps:

- 1. Muon reconstruction is first performed indipendently in the ID $(|\eta| < 2.5)$ and MS $(|\eta| < 2.7)$
- The information from individual subdetectors is combined to form the muon track

Muon Reconstruction -II

Different kind of muons:

- <u>Combined</u> (CB) → a combined track is formed with a global refit that uses the hits from both ID and MS
- <u>Segment-tagged</u> (ST) → a track in ID is classificated as a muon if , once extrapolated to the MS it is associated with at least one local segment in the precision chambers
- <u>Calorimeter-tagged</u> (CT) → a track in ID is identified with a muon, if it can be matched to an energy deposit in Ecal compatible with a MIP
- Extrapolated (ME) → the muon track is reconstructed using only the MS and a loose requirement on compatibility with the IP, taking into account the energy deposit in the calorimeter

Muon Identification -I

Muon quality identification is performed using these discriminating variables:

•
$$\frac{q_{p_{ID}} - q_{p_{MS}}}{\sigma_{q_{p}}} \rightarrow q_{p}$$
 significance
• $\frac{P_{t_{ID}} - P_{t_{MS}}}{P_{t_{CB}}} \rightarrow \rho'$

• Number of hits and number of precision layers

Muon Identification -II

- Medium → only CB and ME muon number of hits ≥ 3
 number of precision layer ≥ 2
 ^q/_p significance < 7
- Loose → all muon types are used same requirements of medium
- Tight → only CB are used same requirement of medium 2-dimensional cut in the ρ' and ^q/_p significance
- High-Pt → muon have to pass the medium selection number of precision layer = 3 vetoed chambers

Inclusive selection

Reconstruction Efficiency -I

Measured with tag-and-probe method The method is based on the selection of almost pure samples ${}^{J}\!/_{\psi} \rightarrow \mu\mu$ and $Z \rightarrow \mu\mu$ events

Tag muon must pass the medium selection

 $\Delta R_{probe} = 0.05$ is the cone radius showed in the picture -> $\sqrt{\Delta \eta^2 + \Delta \phi^2}$

The scaling factor (SF) define the agreement between data and MC efficiency:

$$SF = \frac{\epsilon^{data}}{\epsilon^{MC}}$$

Reconstruction Efficiency -II

Reconstruction efficiency as a function of η (left) and Pt (right) measured for different muon identifications

Momentum calibration -I

 $J/_{\psi} \rightarrow \mu\mu$ and $Z \rightarrow \mu\mu$ samples are used to calibrate the momentum very useful to measure the Higgs mass

MC P_t will be corrected using several parameters (s_0 , s_1 , Δr_0 , Δr_1 , Δr_2) estimated with a fit using the following:

$$P_t^{Cor} = \frac{P_t^{MC} + \sum_{n=0}^{1} s_n(\eta, \phi) (P_t^{MC})^n}{1 + \sum_{m=0}^{2} \Delta r_m(\eta, \phi) (P_t^{MC})^{m-1} g_m}$$

Where the following parameters takes into account of:

- $s_0 \rightarrow$ the inaccuracy of the energy loss from IP to MS
- $s_1 \rightarrow$ the innacuracy of the description of magnetic field
- $\Delta r_m \rightarrow$ describes the momentum resolution smearing

Damiano Vannicola

Momentum calibration -II

• Plot of data, MC and MC after the corrections

Conclusions

- Muon objects are used in most of the analyses at ATLAS
- Several algorithms developed to ensure robust and high efficient reconstruction and identification of muons
- Efficiency close to 99% within acceptance
- In situ techniques for the measurement of the muon reconstruction efficiency, momentum scale and resolution using J/ψ , and $Z \rightarrow \mu\mu$
- Correction factor estimated to remove residual discrepancies of data and simulation
- Next studies → try to optimize the compromise among efficiency and resolution for high pt muon (TeV), that can be used for BSM searches

backup

Reconstruction Efficiency -III

• Rate of prompt and fake muon as a funcion of $P_t \eta$

