# GRAVITATIONAL WAVE EXPERIMENTS 2. DATA ANALYSIS

Giancarlo Cella Istituto Nazionale di Fisica Nucleare – Sezione di Pisa





XIX FRASCATI SPRING SCHOOL "BRUNO TOUSCHEK" in Nuclear, Subnuclear and Astroparticle Physics





# Example: two detection problems

| "noise type A".                                                                                | "noise type A" + sinusoid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                | antenne kelen einer der sonster einer eine sehen die nicht gebrung einer die tellen einer der einer der einer einer die einer                                                                                                                                                                                                                                                       |
| a bha a chadha an 17 amai alfada a bhla gan falan dda gan an an an an an ann an an an an an an | er ander of selene for all for a general and provide the general and the gradient and the selent of a provide the selected and |
| Is it easy to detect the presence of                                                           | the sinusoid?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| "noise type B".                                                                                | "noise type B" + sinusoid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Is it easy to detect the presence of the sinusoid?     Very     difficult!                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

In the large N limit (if the noise is stationary) the eigenvalues of  $C_{ij}$  are trigonometric functions.



#### Noise "B" + sinusoid



"noise type B" + sinusoid

The amplitude of the signal must be compared with the amplitude of the "parallel" component of the noise.

### The detection problem

- A detector is an arbitrary rule to partition the space of possible experimental results in two parts (yes or no answer to a well defined question)
- We characterize the detector with
  - Detection probability P<sub>D</sub>
  - False alarm probability P<sub>FA</sub>







### Best $P_D$ at a given $P_{FA}$





• The detector decide Yes or No by throwing a coin. Is it a valid detector? What is  $P_D$  and  $P_{FA}$  in this case?

 $\widetilde{s}^{(1)}$  $\tilde{s}^{(3)}$  $\simeq (k)$  $\underline{\tilde{S}}$ Detector Yes, No

• Can you easily design a detector with  $P_D = 1$ ? And one with  $P_{FA} = 1$ ?

### The detection problem

• We can try to maximize  $P_D$  keeping  $P_{FA}$  fixed

$$\max_{\Lambda} \int_{\Lambda} dP_1 - \lambda \int_{\Lambda} dP_0$$

• The solution:  $\Lambda_{opt}$  is the set of  $\tilde{s}$  where







How we can choose the desired value of  $P_{FA}$ ?

# DETECTION

Wiener Filter

#### An example: known signal in «coloured» noise

- We start from a model with two different alternatives for the observed time series:
  - $H_1$ : Known signal with additive gaussian noise  $O_i = S_i + N_i$
  - $H_0$ : Only gaussian noise:  $O_i = N_i$
- The probability distribution for the observations under  $H_0$  is

$$dP_0\left[O_i\right] = \mathcal{N} \exp\left[-\frac{1}{2}\underline{O}^T C^{-1}\underline{O}\right] dO_i$$

 $Y_{NP} = \underline{\mathbf{O}}^T C^{-1} \underline{\mathbf{S}} > \lambda'$ 

• The probability distribution for the observations under  $H_1$  is

• The NP detector is given by 
$$\left[-\frac{1}{2}\left(\underline{\mathbf{O}}-\underline{\mathbf{S}}\right)^T C^{-1}\left(\underline{\mathbf{O}}-\underline{\mathbf{S}}\right)\right] dO_i$$

$$\exp\left[-\frac{1}{2}\left(\underline{\mathbf{O}}-\underline{\mathbf{S}}\right)^{T}C^{-1}\left(\underline{\mathbf{O}}-\underline{\mathbf{S}}\right)+\underline{\mathbf{O}}^{T}C^{-1}\underline{\mathbf{O}}\right] > \lambda$$



### The Wiener filter

$$\underline{O}^T C^{-1} \underline{S} \xrightarrow{\text{Frequency domain}} W(\vec{\alpha}, s] = \int_0^\infty \frac{\tilde{T}(\vec{\alpha}, f)^* \, \tilde{s}(f)}{S(f)} df$$

- This is a scalar product between the expected signal and the observed one
- Weighted with the noise.
- Fourier domain is convenient when the noise is stationary
- If the signal is not completely known? Try all of them and use

$$\max_{\vec{\alpha}} W\left(\vec{\alpha}, s\right] > \lambda$$

# DETECTION

Binary systems

### Unknown parameters



- ~250000 templates
- Parameter estimate (fast, rough, single detector)

# DETECTION

Continuous sources

### The signal from a NS

#### General case: free rigid body rotation.

- The rotation can be described in term of Elliptic functions
- Two periodicities T and T<sup>0</sup>: discrete spectrum

#### Small deviations from axisymmetry:

- Deviation from axisymmetry:  $2\Omega_{rot}$
- Precession:  $\Omega_{rot} + \Omega_{prec} \simeq \Omega_{rot}$
- excited oscillatory modes such as the r-mode









## The expected signal at the detector

# A gravitational wave signal we detect from a NS will be:

- Frequency modulated by relative motion of detector and source
- Amplitude modulated by the motion of the non-uniform antenna sensitivity pattern of the detector





### Signal received from an isolated NS

$$h(t) = F_{+}A_{+}\cos\Phi(t) + F_{\times}A_{\times}\sin\Phi(t)$$



strain antenna patterns. They depend on the orientation of the detector and source and on the polarization of the waves.

$$\Phi(t) = \Phi_0 + 2\pi \sum_{n=0}^{\infty} \frac{f^{(n)}}{(n+1)!} \left[ T(t) - T(t_0) \right]^{n+1}$$

*T*(*t*): time of arrival of a signal at the solar system barycenter, *t* the time at the detector.



Initial conditions

-0.5

- Frequency evolution
- Relative velocity between source and detector

In the case of an isolated tri-axial neutron star emitting at twice its rotational frequency

$$A_{+} = \frac{1}{2} h_0 (1 + \cos^2 t)$$
$$A_{\times} = h_0 \cos t$$
$$h_0 = \frac{4\pi^2 G}{c^4} \frac{I_{zz} \varepsilon f_{gw}^2}{d}$$

 $h_0$  - amplitude of the gravitational wave signal i - angle between the pulsar spin axis and line of sight $\varepsilon = \frac{I_{xx} - I_{yy}}{I_{zz}}$  - equatorial ellipticity

0.5

-0.5

# Known pulsars

Position & frequency evolution known (including derivatives, timing noise, glitches, orbit)

## Unknown neutron stars

Nothing known, search over position, frequency & its derivatives

# Accreting neutron stars in low-mass x-ray binaries

Position known, sometimes orbit & frequency

# Known, isolated, non-pulsing neutron stars

Position known, search over frequency & derivatives

- Applicable when we know all (or many) parameters of the source
  - Conceptually: a Wiener filtering. In time domain: resampling + Fourier Transform



- What if some parameters are missing?
  - In some cases they are irrelevant (e.g. amplitude of the signal). They can be adsorbed in the threshold of the detector.
  - In some cases they give a modified detector. Example: if initial phase is unknown, the optimal NP filter is a quadrature sum of two Wiener filters
  - General case: try all the possibilities, choose the largest answer (GLRT detector). This requires a bank of templates. This is no more a targeted search.

- Coherent methods are the most sensitive methods (amplitude SNR increases with square root of observation time) but they are the most computationally expensive.
  - Our templates are constructed based on different values of the signal parameters (e.g. position, frequency and spindown)
  - The parameter resolution increases with longer observations
  - Sensitivity also increases with longer observations
  - As one increases the sensitivity of the search, one also increases the number of templates one needs to use.

#### Number of templates

The number of templates grows dramatically with the coherent integration time baseline and the computational requirements become prohibitive



### Radon transform

- Compute periodograms from short periods
- Shift (slide) periodograms accordingly to the frequency evolution
- Sum (stack) the periodograms



#### Hough transform

- Each point (xi,yi) corresponds to the set of lines y=mx+q with q=yi-m xi
- The set is represented by a line in the (q,m) plane
- The transform maps (xi,yi) to this line



### Hough transform: application



# DETECTION

Stochastic signals

### Stochastic background in a nutshell

#### A stochastic background can be seen as

- a GW field which evolves from an initially random configuration
- the result of a superposition of many uncorrelated and unresolved sources

#### Two different kinds:

- Cosmological:
  - signature of the early Universe: coupling of gravitational field is small!
  - *inflation, cosmic strings, phase transitions...*
- Astrophysical:
  - sources since the beginning of stellar activity
  - compact binaries, supernovae, rotating NSs, core-collapse to NSs or BHs, supermassive BHs...

Typical «first approximations» :

- 1) Gaussian, because sum of many contributions
- 2) Stationary, because physical time scales much larger than observational ones
- 3) Isotropic (at least for cosmological backgrounds)
- 4) Unpolarized



### How we can observe a GW stochastic background?

If we accept these working hypothesis:  $\begin{aligned}
\text{``A stochastic background is completely} \\
\text{described by its power spectrum''} \\
\\
h_{ij}(t,\vec{r}) &= \sum_{\substack{P=+,\times\\ \int_{S^2} d\hat{\Omega} \ \varepsilon_{ij}^P(\hat{\Omega}) \int_{-\infty}^{\infty} df \ \tilde{h}_P(f,\hat{\Omega}) e^{i2\pi f(t-\hat{\Omega}\cdot\vec{r})} \\
& \varepsilon_{ij}^+ = m_i m_j - n_i n_j \\
& \varepsilon_{ij}^\times = m_i n_j + n_i m_j
\end{aligned}$ 

For a given mode decomposition, we can consider the amplitudes  $h_{+,\times}(f,\hat{\Omega})$  as stochastic variables. What can be said about their statistical properties?  $h_{+,\times}(f,\hat{\Omega})$ 

$$< h_A^{\star}(f,\hat{\Omega},\psi)h_B(f',\hat{\Omega}',\psi') > = \delta_{AB}\delta(f-f')\frac{\delta^2(\hat{\Omega},\hat{\Omega}')}{4\pi}\frac{\delta(\psi-\psi')}{2\pi}\frac{1}{2}S_{gw}(f)$$

#### Detection: the basic idea

- Output of the first interferometer:  $s_1(t) = h_1(t) + n_1(t)$
- Output of the second interferometer:  $s_2(t) = h_2(t) + n_2(t)$
- This is because we suppose a model with additive noise

Now:

$$\langle s_1 s_2 \rangle = \langle h_1 h_2 \rangle + \langle h_1 n_2 \rangle + \langle n_1 h_2 \rangle + \langle n_1 n_2 \rangle$$

This is because:

- Noise and signal are uncorrelated
- Noise between two detectors are uncorrelated



Can you figure out a mechanism which makes signal and noise correlated? Can you figure out a mechanism which makes noises of two detectors correlated?

### What does this really means?

• We have 2 stochastic processes, the detectors' output

$$\underline{\tilde{s}}(f) = (\tilde{s}_1(f), \tilde{s}_2(f))$$
$$\underline{\tilde{s}}(f) = \underline{\tilde{h}}(f) + \underline{\tilde{n}}(f)$$

✤ If we suppose both signal and noise to be Gaussian

$$dP = \mathcal{N} \exp\left(-\int \frac{1}{2}\tilde{\underline{s}}(f)^{+} \mathcal{C}^{-1}(f)\,\tilde{\underline{s}}(f)df\right) \prod_{f} d\tilde{\underline{s}}(f)$$

This is completely specified by the spectral covariance array

Stationarity implies that signals at different frequencies are statistically independent

### What does this really means?

• The problem is now clearly defined: we must discriminate between two different hypothesis:

 $\mathcal{H}_0$  There is only instrumental noise:  $dP \equiv dP_0$ 

$$\mathcal{C}=\mathcal{C}_N=\left(egin{array}{cc} S_n^{(1)}&0\ 0&S_n^{(2)} \end{array}
ight)$$

 $\mathcal{H}_{1} \quad \begin{array}{l} \text{There is instrumental noise and a stochastic background } dP \equiv \\ \mathcal{C} = \mathcal{C}_{N} + \mathcal{C}_{h} = \begin{pmatrix} S_{n}^{(1)} + S_{h} & \gamma S_{h} \\ \gamma S_{h} & S_{n}^{(2)} + S_{h} \end{pmatrix}$ 

?

Is it possible to search for a stochastic background  $h_0^2 \Omega_{gw}(f) = \frac{1}{\rho_c} \frac{d\rho_{gw}}{d\log f} = \frac{4\pi^2 h_0^2}{3H_0^2} f^3 S_h(f)$ with a single detector?

#### in our case:

$$\frac{dP_1}{dP_0} = \exp\left\{-\frac{1}{2}\int df \underline{\tilde{s}}^+ \left[\left(\mathcal{C}_N + \mathcal{C}_h\right)^{-1} - \mathcal{C}_N^{-1}\right]\underline{\tilde{s}}\right\}$$

Note that this is equivalent to the detector

$$\int df \underline{\tilde{s}}(f)^+ \left[ \mathcal{C}_N^{-1} - \left( \mathcal{C}_N + \mathcal{C}_h \right)^{-1} \right] \underline{\tilde{s}}(f) > \lambda'$$

which can be written in the suggestive form

$$\operatorname{Tr}_{f,D}\left\{\left[\underline{\tilde{s}}\underline{\tilde{s}}^{+}\right]\left[\mathcal{C}_{N}^{-1}-\left(\mathcal{C}_{N}+\mathcal{C}_{h}\right)^{-1}\right]\right\}>\lambda'$$

In the applications,  $S_N \gg S_h$ , and we can simplify further this expression

$$\mathcal{C}_N^{-1} - \left(\mathcal{C}_N + \mathcal{C}_h\right)^{-1} \simeq \mathcal{C}_N^{-1} \mathcal{C}_h \mathcal{C}_N^{-1}$$

and we get the optimal detector

$$Y \equiv \int df S_h \, \underline{\tilde{s}}^+ \begin{pmatrix} \left(\frac{1}{S_n^{(1)}}\right)^2 & \frac{\gamma}{S_n^{(1)}S_n^{(2)}} \\ \frac{\gamma}{S_n^{(1)}S_n^{(2)}} & \left(\frac{1}{S_n^{(2)}}\right)^2 \end{pmatrix} \underline{\tilde{s}} > \lambda'$$



We can expect the contributions from the out of diagonal elements of the array to be dominant? Why? When?

*Y* is approximately a Gaussian variable (why?). We can evaluate its mean and its variance.

$$Y \equiv \int df \left[ S_h \frac{\gamma}{S_n^{(1)} S_n^{(2)}} \left( \tilde{s}_1^* \tilde{s}_2 + \tilde{s}_2^* \tilde{s}_1 \right) \right]$$

$$\langle Y \rangle_{H_0} = 0 \qquad \langle Y \rangle_{H_1} = T \int df \frac{S_h^2 \gamma^2}{S_n^{(1)} S_n^{(2)}}$$
$$\operatorname{var}_{H_0}(Y) \simeq \operatorname{var}_{H_1}(Y) \simeq T \int df \frac{S_h^2 \gamma^2}{S_n^{(1)} S_n^{(2)}}$$

So, we have two gaussian distributions with the same variance and different means.



Explain the *T* factors. How the detection probability is expected to improve with the measurement time (Discussion)?

### Overlap reduction function

The signal is a linear combination of the elements of the strain tensor.

- Gaussian
- Stationary, at least if D<sup>ij</sup> is time independent

 $\left\langle \tilde{h}_{A}^{\star}(f)\tilde{h}_{B}(f')\right\rangle = \left\langle \left(\tilde{D}_{A}^{ij}\star\tilde{h}_{ij}\right)^{\star}(f)\left(\tilde{D}_{B}^{kl}\star\tilde{h}_{kl}\right)(f')\right\rangle$ 

This can be written as

$$\left< ilde{h}^{\star}_A(f) ilde{h}_B(f') \right> \propto \delta(f-f') S_h(f) \gamma_{AB}(f)$$

where the overlap reduction function  $\gamma_{AB}$  is defined by

$$\gamma_{AB}(f) = \frac{1}{F} \sum_{P} \frac{d\hat{\Omega}}{4\pi} D_A^{ij} \varepsilon_{ij}^P \left(\hat{\Omega}\right) D_B^{kl} \varepsilon_{kl}^P \left(\hat{\Omega}\right) e^{2\pi i f \hat{\Omega} \cdot \Delta \vec{r}}$$

Depends on distance (same features of strain correlations)

Depends on orientation (via the overlap of detector tensors)

Overlap reduction function (a.k.a. coherence)

$$\mathsf{SNR}_Y^2 := \frac{\mu_Y^2}{\sigma_Y^2} = 2T \int_0^\infty S_h^2(f) \frac{\gamma_{12}^2(f)}{S_{n,1}(f)S_{n,2}(f)} df$$



Overlap reduction function (a.k.a. coherence)

$$\mathsf{SNR}_Y^2 := \frac{\mu_Y^2}{\sigma_Y^2} = 2T \int_0^\infty S_h^2(f) \frac{\gamma_{12}^2(f)}{S_{n,1}(f)S_{n,2}(f)} df$$



Targeted search: reconstruct a map of the gravitational wave uminosity in the sky

- $C(t,f) = \oint_{S^2} \mathcal{L}(\theta,\phi,f) \mathcal{F}(\theta,\phi,f,t) \sin \theta d\theta d\phi$
- Correct the direction-dependent modulation
- Cross-Correlate
- At least 3 detectors needed to close the inverse problem.
- Angular resolution limited by  $~~\lambda/D$



Figure 1. The antenna pattern for the cross-correlated LIGO detectors in the Earthfixed frame,  $\mathcal{F}(\bar{\theta}, \bar{\phi}, f)$ , with  $g_I = 0$  and f = 25, 50, 100 and 200 Hz.

Cornish N.J., 2001, "Mapping the Gravitational Wave Background", CQG, 18, 4277; astro-ph/0105374

Virgo+WA 200 Hz

# Detectors' number and reconstruction error



HL

HLV

## Non Gaussian Stochastic Background

Duty cycle D(z): key parameter to characterize the detection regime. Given the average event duration  $\tau$ 

$$D(z) = \int_0^z \left[ (1+z')\tau \right] \left[ \frac{dR^O}{dz'}(z') \right] dz'$$
Observed event  
duration
New Served time interval between events

- **D** << 1: resolved sources
  - Burst data analysis, optimal filtering
- **D** ~ 1: popcorn noise
  - Maximum Likelihood statistic (Drasco et al. 2003), Probability Event Horizon (Coward et al. 2005)
- **D** >> 1: Gaussian stochastic background
  - Cross correlation statistic (isotropic/anisotropic)



# PARAMETER ESTIMATION

Some examples

If we know the statistical properties of the noise (and of the signal, in needed)



- This is the «mother of all information»
- Take away message: waveforms can contain very detailed information about the parameters of the sources

#### Parameters of the BBH systems



### Localization







#### Localization











Radio

Astrophys. J. Lett. 848, L12 (2017)

