Giancarlo Cella
Istituto Nazionale di Fisica Nucleare - Sezione di Pisa




Transverso

Quadrupoiar
(e
ot Transverse
R * Breathing
& 5
ol f
. H
- L X
L] -
x =
-|.'l ‘.'
e & Longitudina
‘e at Sircich

Coupling between detector and signal

LR

-

.'...‘
i*‘
-
-
*
2 7
A
-
L]










=

ble for interferomn

=
Z
22>

The basic of

1etric aetection

S€efva

= The round trip time of a light signal measured with the
clock of an observer

= This does not depend on the chosen reference system

= However, the way in which the effect is described
depends from it:

= in the previous video, the round trip time changes because the
round trip length does;

= there can be other pictures, more useful for certain purposes




Round trip time evaluation

= We will assume a free fall motion of the observer and of the
reflecting mirror, so for both we have

dut
= I u”u”
.
= But remember that Fﬁp — O(h) if Guv — Nuv + h‘,u,;f, SO
d 1
_ - A
55’&” = —1'g = —3 " (2hxo0,0 — hoo,x)

= Generally speaking, observer and mirror coordinates changes
owing to the effect of gravitational waves

» But note that in TT gauge du' = const

4 Ct




= Mirror and observer coordinates are fixed. For the light signal

we get o ' _
dr? = —2dt? + daFdz® + ]’L-%T()Z.’IJZ()Z.’IJ'} = (
1 L. pr T ~
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) : . : ~
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iterative solution G{h)

h. sin wt, — sin wt,
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The GW strain is encoded in the time
dependence of the round trip time

Note that there is a high frequency cut
off, which is effective when \ < L

By repeating these steps for a round
trip along the y direction we find a
similar expression, with h,, -> h,,

Note that only the + polarization is
coupled to these round trips
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Description in the proper detector frame (LLF)

= When the wavelength of the GW is large compared with the detector size, we can
directly use the geodesic deviation equation to evaluate the round trip time

= |n this reference frame the propagation of the light is NOT affected by the
gravitational wave

= On the other hand, mirror moves accordingly with

d? 1. 1..
ﬁ Vi (t) = 5 hf:{::){:-jj M (t) ~ § h’i.'li:}JL

...and similarly for the other positions
This gives an intuitive description in term of

«Newtonian» forces. N
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Optical schemes
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How the round trip time is really measured? Interferometer
= The round trip time in one arm is B s N
compared with the round trip time in the Py
second

= First RT is a reference for the second I
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How the round trip time is really measured? Cavity

0.X 0.X5 ; .
_ " Ao = Here the output field get a phase shift
_1 (I)T?—r Ep——
i D
L | Aj L | |
- : CID
Ao = —TA; + 7 (qubﬂz@. +re?P A, + r2e3?A; + - - - )

J r = 0.5.0.9.0.99

. .
€ » — r 1D = To measure the phase we need a

AO — ) A@ — € A/L reference: we can modulate the input
1 — Tew field to obtain «promptly reflected»

sidebands
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Arm with Michelson
resonant cavities

Power recycling

= Signal recycling
= Observed:
— N RLT
h(t) = D nl
where

DY = y'u! — v'’
is the «detector tensor»
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Detector tensor and angular sensitivity pattern

= We can represent as a function of the
GW's direction of propagation

['(n) = DY |cos e (R) + sin e ()]
= For each 71 there is an optimal

polarization angle ¥,

" Yope + /2 gives a decoupled
polarization

= This gives the directionality of an
interferometric detector




The working point




Locking

= The phase shift of a cavity
IS a very sensitive function R=0.5
of the cavity length only in
a small region around the
cavity resonance

= This is especially true m n n r S
when the finesse of the r\ [\ (\{\ (\/\ [
cavity is high i

= We must maintain the V U
cavity length in this small
region if we want a
sensitive detector )\E

= This must be done with an 5L ~ 4}. R =099
active control strategy

R=09 '}




= Several strategies are
studied and implemented,
for example
= Trial and error
= Artificial reduction of finesse
= Multistep procedures

= An interesting example:
«Guided Lock» strategies

= The idea: apply the control
force also when the cavity is
out of the working point, using
information about the
dynamics
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IC noise

Seism




= Seismic noise influences the final
sensitivity of the detector
= f < 1Hz: microseismic noise. Natural sources
(non-cultural and non local) depending on

oceanic and large scale meterological
conditions;

= f =~ 1Hz: wind effects and local meterological
conditions;

= f > 1Hz: mainly antropogenic noise

= Seismic noise is reduced at the required
level using a mirror suspension system,
which allows to extend the detection
band below 100 Hz

= |n VIRGO this is implemented by an
hybrid passive/active system called
Super-Attenuator

Acceleration PSD [m?/s*/Hz]

10°7° -
........ L|GO_H
-==-LIGO-L
— Virgo

10 GEO600

—i
DI

-y
o

10

-
ra

I
—_
S

| |

10°
Frequency [HZz]




nension

h<——— [FilterD

= Based on the working principle of a multistage
pendUI.um: Suspension'wire

Transfer Function of Single and Double Pendulum
= |nverted 10" A ittt
Pendulum
= N filters 7
= Payload or /-
laSt Stage Standardfilters :\R
L
=
=
I=
[ )]
Q
£
Filter ?\. ;:\:..
™ o = iPlegs

10" 10" 10" 10°

frequency (Hz)



Active control

25 = Passive attenuation do not work
o below few Hz
10
0 = [n the range 0.04Hz < f < 2Hz the
lo* chain resonance modes induces tens
107" - of microns swings
: 10" 1 | o :
T o> = This is much larger than the linear
0" | ~working point region: we need active
l;/leasu;gd 0> | \ : control;
attenuation =3 | | _ . . :
upper limit iz | }J‘Mﬂ i Isrésg’lt:]aggdandwm?g on Inverted Pendulum (tidal
™ |l e sTemes] | = Local Control on Marionette (angular mirror
| displacements reduced down to a fraction of
10_30 | urad
T T 10 100 e = Local Damping on Reference Mass

frequency (Hz)
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Local control

A

to SA's filter 7(  F7)
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d detectors: a sensitivity
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1] —Dual rec., 125W, detuned SR. Range: 142 Mpc

(Sept

Frequency (Hz)

= L arger beams

= Heavier mirrors:
42 kg (x 25

= New payload

= Higher quality optics

= Larger finesse: F ~ 45(0) (X 3)

= Improved thermal control of aberrations
= |mproved vacuum

200W fiber laser

Signal recycling
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] e @) Gravity gradient
G @' Suspension thermal noise
R ﬂ Coating Brownian noise
........ 9 Coating thermo-optics noise
o @ Substrate Brownian noise
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"""""""" | — ) Total noise
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Frequency [HZ]

= Fundamental noises

Seismic

= Direct
= Newtonian

= Thermal

= Suspension
= Mirror Coating
=  Mirror Bulk

= Quantum

= Shot noise
= Radiation pressure

= Technical noises

Laser frequency & intensity
Scattered light
Residual gas

Length and alignment control systems
Magnetic actuation
Acoustic couplings
Nonlinear couplings (up-conversion)
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= Dominated by thermal
fluctuations of mirrors and
suspensions

= Handles:

= |Larger beam spot (statistical
effect)

= Fused silica fiber suspensions
(low losses)

= |mproved mirror coatings (low
losses)

= Cryogeny (not foreseen in LIGO
& Virgo)




Coating thermal noise

= A difficult problem

e = Constraint: g%ood optical
il i i properties of materials
as agﬁ; %’—/\ st layer - 5 .
ses0ssam (s 130oubels 130713 mm Tal = Complex theoretical modelization
131517 nm [51) of dissipation mechanisms
= Phenomenological approach:
O I parameter optimization (genetic
algorithms, ....)
substrate
. = Experimental approach: test new
e N N materials (new kind of dopings)
29.410 nm [Si] 16 doublets 72.677 nm [Ta] . ..
250.984 am [SI = Currently the limit in the

intermediate frequency region
Opt. Express 23, 10938-10956 (2015)
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Quantum noise




NOISe

* There Is a fundamental
limit on continuous
position
measurements of
quantum nature
(the Standard
Quantum Limit)

» How can we deal with
it?
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g block: a resonant cavity

= Basic Hamiltonian of the system: o
H = ext. couplings + hw, a* a + hQ,,, b b

= The cavity frequency depends on its length....

N 0w, N
w- = w X
Cc c,0 ax )

= ..and we get

H = Hy,— hgoa*a(b+b")




Linearized equations

= A very good approximation in the regime we are interestedto: a=a + da

= ... keeping only linear and quadratic terms in the frame rotating with the laser
frequency.... R
H = —hASG*6a + hQ,,,b*h
—hgo(adat + a*sa)(b* +b) + -
A= wp— Weqp

32



measurements

= |f we measure the position of a free mass with a given accuracy, we get an
indeterminacy on velocity

= The position indeterminacy grows with time

= We cannot predict exactly where the mass will be after some time
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measurements

= |f we measure the position of a free mass with a given accuracy, we get an
indeterminacy on velocity

= The position indeterminacy grows with time

= We cannot predict exactly where the mass will be after some time
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neasiirements

= |f we measure the position of a free mass with a given accuracy, we get an indeterminacy on velocity
= The position indeterminacy grows with time
= We cannot predict exactly where the mass will be after some time

= Best compromise: Standard Quantum Limit
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Current and future interferometers

Quantum noise . o
Gravity Gradients OEO. SEEESSEE ST e

= QN will be one of
the main noise
sources

| m— Suspension thermal noise TORNo ererchonafondundeg dind
.| s Coating Brownian noise . RN
Coating Thermo-optic noise SR SRS N
Substrate Brownian noise ' S A

= Design sensitivit N\ | Excess Gas
of Advanced LIGO - N\ | = Total noise e R HEs:

» Fundamental
problem for third
eneration
(Einstein 1 NN
Telescope) TR

Strain [1VHZz]

Frequency [Hz]



The SQL is not a fundamental limit:

- We are NOT really interested in measuring the
positions of the mirrors

- Instead, we are interested in monitoring the
(classical) GW strain which act on them

e No back action of the
measurement of the
velocity

« More generally, there is no
SQL for a conserved
quantity

e« Can we do this?



The SQL is not a fundamental limit:

- We are NOT really interested in measuring the
positions of the mirrors

- Instead, we are interested in monitoring the
(classical) GW strain which act on them

e No back action of the
measurement of the
velocity

« More generally, there is no
SQL for a conserved
quantity

e« Can we do this?



The Speed M

5qf)R ~ 5$N(t) -+ 5&3E(t -+ T)

o0pp ~ dxp(t)+drn(t+T7)

\eler
4 N

0OR — 00, ~ [5mN(t) — 5$N(t + T)]

— [0zp(t) — dxp(t +7)]

ETM

\_ J
—
- )
P. Purdue and Y. Chen, Phys. Rev. D 66 (2002)




Speed meter (continued)

50 ¢

4

wn

ISh U)/Sh (100 Hz)]1f2

o
(S

Can be used together with
other techniques (talk about
these in a moment...)

Image credit: H. Mueller-
Ebhardt, PhD thesis



Ponderomotive squeezing

= In a coherent state phase and amplitude
noise are uncorrelated

= Quasiprobability distribution: isotropic
Gaussian

= Back action induced by radiation
pressure generate a correlation between
phase and amplitude fluctuations

= Fluctuations are increased along a
direction, but decreased along another
one: a squeezed state
«Optomechanical Kerr effect»

(6aa) 2% 0 (6aa>
[ | = w
0ay _mézcgz 1/\day in

out




Homodyne

al guadrature i ™ -

Reading the optim

= The signal is encoded in the phase quadrature

= Without squeezing, this would be the optimal quantity to
measure

phase shifler

= With squeezing, this is not so

M

—
L= ]
i

=

L]

sssse . gnd-mirmed cavity
— Total classical noise

T Ll L LT ETE TS L iELad

Using variational readout we could
competely cancel the radiation pressure — g S s san
noise at one frequency | ~a o bt
To cancel the radiation pressure noise at all 10 - . JU L

Noise spectrum (m/rtHz)
=

—
o
2

FaTR E 2 4 FATH i 1 4 G EIN ¥ ¥ & G

frequencies, we would need a frequency 10 100 1000

dependent angle of readout quadrature Frequency (Hz)




injecting a sgueezed

= Quantum fluctuations enter the

interferometer through the dark Laser

port - 550 I_l
= We can inject an electromagnetic ab

mode in a squeezed vacuum state H

U Photodetector

= |f the squeezing angle is X102

appropriately choosen SQL can be 1025
evaded
= Once again, optimal squeezing Ix107
. — —241
angle is frequency dependent S 5x10
)
1x 10724}
5x1072%}
Kimble HJ, Levin Y, Matsko A B, Thorne K S and Vyatchanin S P 2002 Conversion of conventional gravitational- Variational: lossl
wave interferometers into quantum nondemolition interferometers by modifying their input and/or output SIS Mol is
optics Phys. Rev. D 65 02202 1x 1025 L

10 20 50 100 200 500 1000
[ (Hz)



PBs Saubered” basm -~
Squeezed N7 b
o W @ I’ 5QZ

Source "5, into

AM\ b

= Standard way: nonlinear crystals and optical
parametric amplification

= Over past decade, squeezing made incredible
progresses

= Squeezing at low frequencies (as low as 1Hz)

= Squeezing factor 10dB (QN reduction by a factor 3)

0 T T T T '.
a

§~2 \ 9-\-\ ------ oC
3 \ T
S P m |
3 Ll VR LI R S 1
E \ \ \ o-”qu
E \ WS N ____. ey
s -6 L e 3 ce !
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@ D e e e ~
f ye = = = = = = = = == ~ 11| /
7] b U OO R \ ]
£ -10 - c N o o,
o ~ e \\X_.--
2 _12 \F'- ________ o
5= R |
2 B> <A

-14'= B S S S D Y A - T 9

10 10 10 10 10 10 10 10 10 10 10

Measurement Frequency [Hz]

Courtesy: S.Y.Chua, Ph.D. Thesis (2013)
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Freguency dependent squeezing

AdvLIGO Noise Curve: Pin = 125W

-21

10

Quantum noise
Seismic noise

= Amplitude fluctuations should be reduced at low
frequency

Gravity Gradients
s Suspension thermal noise
=== Coating Brownian noise

= Phase fluctuations should be reduced at higher o e oise

frequenCIeS ﬁ 10_22 Substrate Brownian noise
;E ExcessGlas
= The transition bandwidth should be of the order of & e
00 Hz =
c
. . . . . '
= |t is possible to use optical cavities as filters = H

ETM2

\

Ml 1

i
Pay

[
g 10 102 10°
S Frequency [HZ]
-'% -'I i PM BS ETMIL
oo
Laser S ' ﬂ I |
|I I, u d
Ii il BS A
e I Squeczed ... but they should be large
Vacuum

; * noisy

%&& * expensive



The role of losses

~ ~ Naive model: not consistent with unitarity: commutation
b= ‘/7761 rules are not preserved.

QD

® i

A consistent model: /
a

N Squeezing is rapidly destroyed by
X losses

Ag® =es" - ne " + (1 —n) 2 2 b




ive sgueezi

Ponderomot eneration

TO COIL
= |t is possible to test directly D seeo PRESTABILIZED or LASER
ponderomotive squeezing? D Homoove ro
= | osses <| DIGITAL/ANALOG SERVO
= Thermal noise () pHase vobuLaToR
= Light mirrors
|

Several attempts in progress

Two cavities scheme to
cancel out laser noise "D TO MIRROR

E OR LASER

ki

= Work in progress.....

Squeezed-state source using radiation-pressure-induced rigidity
Phys. Rev. A 73, 023801 - Thomas Corbitt, Yanbei Chen, Farid
Khalili, David Ottaway, Sergey Vyatchanin, Stan Whitcomb, and
Nergis Mavalvala



Detuned

_ ™ Laser suspended
mirror */- \* e i/ ¥ ! cavity
3 S
E I
S F or 4 +
mirror + * \-/
) \./ A - —
.\\\'\. \»\‘\\Q‘ / ! h,
\\\“\\\\ 7 F i Laser - o \
Laser - ~ = " mr';{'-'
AN £
a : b mirror mirror ] ! ~ i
:' _‘_ 3 ; Cavity cooling " Optical spring s
Buonanno and Chen, Phys. Rev. D 65 (2002) a :l b [Anti-tariping
! =+

Detuning / Linewidth

= With Signal Recycling back action is no

f (Hz)

more limited to a single quadrature: T T e T
= A linear restoring force is generated
- Optical and mechanical modes are i \ I
coupled. g I } i
The system is unstable. A control "
feedback must be introduced. % WY A PRI (P b |
2nQd /y

5/30/2014 Optical Quantum Noise in High Sensitivity Measurements




= Measurement of weak forces require
quantum-limited sensors, i.e., working at the
sensitivity limits imposed by Heisenberg
uncertainty principle

= SQL is not a fundamental limit for GW
detection

= Several proposals to evade SQL, starting to
be tested (this is very far from a complete
review)

= Exploring the boundary between micro and
macro world

= \ery rich phenomenology (again, touched
very marginally here)

Mass

Gravity wave
oatecions
(LIGO, Virgo, GEQ...)

Hz

Mirror coated
AFM-cantilevers



wer lasers

= Brute force approach to reduce shot noise

= With squeezing, in principle an handle to

reduce optical noise at will

= Hower, there is not a free lunch:
= Thermal lensing effects
= Thermo-optic noise
= Parametric instabilities

850

845

Frequency [Hz] (16,384 Hz sample rate)

840

4000
Time [s]

1000

100

I
=
=)

ASD [1/VHz]

CO2 laser shined on the mirror:
heat deposition where needed -
to compensate for aberrations

Thermal ienses

Heating rings around
mirrors to tune RoC
(accuracy: ~1Im over 1500m)

Thermal

Excitation
Arm Cavity
Field

Resonant e
Scattered - .

Field

Radiation
Pressure

Evans et al., PRL 114, 161102 (2015)



FEBn D
v',_ af

Gravity fluctuations

i g ey ST S
R TAL S IE I e
._'."_'.'*;,',"',-!f" T i R ST AT N e
: 4% :
% ! hgrie R M
5 T TS __‘.{_1 o L] \}__-u el . i
e i ¢ v e eyt B S
el




GN: direct coupling between environmental
uctuation of mass




po(z)V - d(z,t) # 0

Compressional effects

e Mass density fluctuates

p(x,t) = po(x) + op(x,t)

@ ... and generates
fluctuations of
gravitational field

Po(ﬂf')U(w t)]
lx — x|

5D (. t) —G/

d3a:’



@ Mass density fluctuates.....

p(x,t) = po(x) + op(x,t)

@ ... and generates
fluctuations of
gravitational field

iy
Pl
i)
)

Po(ﬂf')U(ﬂ? t)]
lx — x|

P (x,t) = G/ d3z'

110
|

Illif
\aay
J'Ili'f
R

i(z,t) - Vpo(z) # O

Dragging effects



Relevance

GGN equivalent strain

C =D SCIISIUVILY

ET-C sensitivity

IZ| il NoiS€ model
--..| === Seismic NN (90th), LLO
**'| === Seismic NN (90th), LHO
7| === Wall panels

s < 74 WIhEAY') Halal U | == Building
= - 22 Fan
— = 10 b =4=Sound, inside buildingsf
~ -~
=, = R T A S
£ 2
g E .......................................
AR ST, VIO PRSI AN N PN | SR
@ . x
w 10 E
Q

20 30 40

: H P 10
2 Frequency [Hz]
equency [Hz]
3rd From: Subtraction of Newtonian noise

using optimized sensor arrays
Jennifer C. Driggers, Jan Harms, and Rana
X. Adhikari Phys. Rev. D 86, 102001




Extending the lower frequency limit

= GGN is a low frequency 10°-
fundamental limit for the
sensitivity of earth bound { ™~
detectors |

= When non mitigated by .

1/2 —4
coherence effects S;/c.y < f

'l'i-.

Incréasing
10™ - %

-F?

= GGN strain equivalent noise
decreases by increasing L

otrain (par root Hz)

r—i 4% i 2{I3K

r=0.01, f=—2003

» The detailed shape of the : Stow-rdll inflaion
seismic spectrum should be :

» Coherence effects are relevant
for f < wvg/L.

-
B
&
i

taken into account ey
10" 10°




Gravity Gradient Noise: modelization and estimation

AT G2p?2 142 2 17
R T e ol

Coherence effects

. Italy - Virgo Om ~—
10" 1 Netherlands 10 o
1 Sardinia 185Mm — [t
1 Hungary 400 m — i
LU Spain 800 m — -
Examp[e: otz Rt SRRy @ o AW -
underground £ 10 O 1 -
. . ©» 1012
B (O R R
cavity with 3 W .
A>R 2 10 - a |
1071 N
107 EENEEET | e
. . . T i o S
- Cavity contribution 1017 S
0.1 1 10

Frequency [Hz]




Gravity Gradi

» Useful to deal with complex
situations and/or complex
excitations

= Non trivial

geometry/morphology (for
example, anisotropy)

= Infrastructure effects i
» Effect of localized sources Timefs] 10’

16" ~.

Ll [m/y Hz]
/

x—acceleration [m/s?]

19| I‘”"T-:‘.‘.,
10 - -— Saulson _’I Tl
[ ugh ’ ET design goal
naly cgral

z—-acceleration [m/s?]

|
10
Frequency [Hz]

(for example, once again,
anisotropy)

= Time domain (short scale
non stationarity)

= Can require a large
computational power, In
particular if the dynamics
must be simulated by them

= Need validation:
comparison with analytical
estimates is important
(when an overlap is

possible) )







mass

= GGN is (exponentially) averaged to zero on a scale
= Surface contributions are damped

= Volume contributions come from a 0(1) layer around the test

= Surface waves should be dominant

¢ underground
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@ Simple model
@Homogeneous medium
@ Surface waves only
@ Stationarity
@No strong local sources
@ Validation

@ Prediction about
seismic correlations
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http://arxiv.org/abs/0906.2655
http://arxiv.org/abs/0810.0604

btraction
Stationary, gaussian case:

= Measure some set of auxiliary
quantities (correlated with the noise to
subtract)

= Construct the “optimally subtracted”
signal as

hs(t) = h(t) — Z / A (=) s () dt

= Define the efficiency of the
subtraction procedure as

We need:

= Spectral correlation between two sensors

(57 (w)s; (&) = 278 (w — ') Cij(w)

1

» |tis a function of the positions of the
sensors i and j

= Contributions from seismic noise and
measurement noise

» |n principle, contributions from self
gravitation effects and gravitational waves
and (be careful at very low frequency)

= Correlation between a sensor and the detector
output

(s¥ (W)h(W")) =276 (w — ') N; (w)

» |tis a function of the position of the
sensor relative to the test masses
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= Results for the efficiency: 1 Fe | 066
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= Assumption: sensors dominated by seismic
noise 2 . 0.888
= » is a nonlinear function of the sensor 0.886
S , . 4 .
positions aljd orientation | I R
= Large N; is good: strong correlation between -
auxiliary sensor and G . .
= Small ¢;; is good, if measurement error is An example. given two sensors located L
small: auxiliary meaurements uncorrelated, the optimal way (on the surface), where is
larger information available convenient to put the third, to optimize the
= If measurement error is not negligible: some subtraction at some frequency?
correlation between sensors can be tolerated

= Test mass in the origin
= Coordinates normalized to A
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traction: full optimization of sensor positions

e Using a simple model for
the correlations

« 512 sensors

« At a fixed frequency

Test mass
here
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= Specific sensor placement is not critical
. N
= Detailed model needed: C
< 22
= Volume waves =10
: 2
= Scattering effects 2
‘®
» Enough improvement for a third generation detector & .
c
. . ©
= Good in the low frequency region &
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Relative Subtraction Residual

— Spiral, N=20, r=10km|"-

—e—Spiral, N=10, r=10km/...........:
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| —8-Noise model

| —6—Newtonian noise

| =&=Spiral, N=10, r=8m, post NN res.
| —==Circle, N=10, r=5m, post NN res.
| —#-Linear, N=10, r=8m, post NN res. |
Optimal, N=10, r=8m, post NN res.
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Third generation detectors
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eLISA Space Based GW Detector

* Laser Interferometer in Space Antenna, LISA, provides unique capabilities
— Immune to seismic noise

— Long baseline provides 0.001 - 1Hz GW spectrum sensitivity needed for observing
massive black hole mergers

* Multiple identical or similar detectors to improve detection confidence

LISA: a mission to detect and observe gravitational waves, O Jennrich, in Gravitational Wave and Particle
Astrophysics, Proc SPIEv5500
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