Dark photon – experimental searches

Venelin Kozhuharov

Sofia University*, University of Rome "La Sapienza, LNF–INFN

XIX LNF spring school "Bruno Touschek" 9.05.2018

* partially supported by BG NSF, DN08-14/14.12.2016 & LNF-SU 70-06-497/07-10-2014

The Dark Photon @ LNF spring school

- Models
- Phenomenology
- Observables (or non-observables)
- When experiment meets theory
- Experiments ... experiments ... experiments

Why Dark Photon?

 About 3 σ discrepancy between theory and experiment (3.6 σ, if taking into account only e+e- → hadrons)

$$a_{\mu}^{\text{dark photon}} = \frac{\alpha}{2\pi} \varepsilon^2 F(m_V/m_{\mu}), \qquad (17)$$

where $F(x) = \int_0^1 2z(1-z)^2/[(1-z)^2 + x^2z] dz$. For values of $\varepsilon \sim 1-2 \cdot 10^{-3}$ and $m_V \sim 10-100$ MeV, the dark photon, which was originally motivated by cosmology, can provide a viable solution to the muon g-2 discrepancy. Searches for the dark

Venelin Kozhuharov, XIX LNF Spring School

Why Dark Photons

Venelin Kozhuharov, XIX LNF Spring School

Why Dark Photon?

The effective interaction that can be studied is

- $q_f \rightarrow 0$ for some flavours
- Textbook scenario, could address the $(g_{\mu}-2)$ discrepancy, abundance of antimatter in cosmic rays, signals for DM scattering
 - General U'(1) and kinetic mixing with B (A', Z')
 - Universal coupling proportional to the q_{em}
 - Just single additional parameter ϵ

$$L_{mix} = -\frac{\epsilon}{2} F^{QED}_{\mu\nu} F^{\mu\nu}_{dark}$$

- Leptophilic/leptophobic dark photon
- "Gauging" SM accidental symmetries: (e.g. L μ L τ , B L)

Variety of Dark Photons ...

- Part of the phenomenology of the Dark Photon depends on what we don't know
 - Is it really a mediator between the visible and the hidden world?
 - Is it a manifestation of a Fifth Force?
 - How does it come to couple to SM particles?
 - Mixing with SM gauge boson?
 - Universal versus non-universal couplings?
- And moreover what the hidden world looks like?
 - Light?
 - Heavy?
 - How many states?

Parameters with the Dark Photons

 10^{-4} KI OF KLOE 10⁻⁵ BaBar APEX $a_{\mu,\pm 2\sigma}$ favored A1 10⁻⁶ NA48/2 E774 10⁻⁷ ۲ س 10⁻⁸ E141 10^{-9} 10⁻¹⁰ Orsav U70 10⁻¹¹ 10^{-3} 10^{-2} 10^{-1} 1 $m_{A'}$ [GeV]

Dark photon is the only new light particle

- Two parameters
 - Mass M_A
 - Coupling constant

• At least four parameter space to be studied:

$$M_{A'}$$
, g', g_{D} , M_{χ}

Parameters with the Dark Photons

- The picture is quite simplified
 - Minimal extension of the Standard Model
- Shall we be minimal?
 - Multiparticle structure of the Standard Model
 - Why the DM should be composed of a single particle?

The picture should be simple, but not simpler than necessary

- Each coupling to the SM fermions might be flavour dependent
 - g' becomes g'_f, tuning to avoid anomalies
- Multiparticle structure of DM: $\chi \rightarrow \chi_i$, $M_{\chi} \rightarrow M_{\chi i}$
- DM coupling constants might be different: $g_D \rightarrow g_{Di}$

Dark Photon production

- In the general framework every SM particle can become a source of dark photons
- Type of the initial particles
 - A' from electrons
 - A' from hadrons
- Type of technique
 - Colliders
 - Beam dump
 - Thin targets
- Production mechanisms
 - Meson decays
 - Bremsstrahlung
 - Annihilation

Dark Photon decays

• Leptons

$$\Gamma_{A' \to l^+ l^-} = \frac{1}{3} \alpha \epsilon^2 M_{A'} \sqrt{1 - \frac{4m_l^2}{M_{A'}^2}} \left(1 + \frac{2m_l^2}{M_{A'}^2}\right)$$

Hadrons

$$\Gamma_{A' \to \text{had}} = \frac{1}{3} \alpha \epsilon^2 M_{A'} \sqrt{1 - \frac{4m_{\mu}^2}{M_{A'}^2}} \left(1 + \frac{2m_{\mu}^2}{M_{A'}^2} \right) \times \frac{\Gamma(e^+e^- \to \text{hadrons})}{\Gamma(e^+e^- \to \mu^+\mu^-)} (E = M_{A'})$$

• Dark matter fermions

$$\Gamma_{A'\to\chi\chi} = \frac{1}{3} \alpha_D M_{A'} \sqrt{1 - \frac{4m_{\chi}^2}{M_{A'}^2}} \left(1 + \frac{2m_{\chi}^2}{M_{A'}^2}\right)$$

Venelin Kozhuharov, XIX LNF Spring School

The Faith of the Dark Photon

- Decays to SM fermions
 - Depending on mass: e^+e^- , $\mu^+\mu^-$...

For $M_{A'}$ = 40 MeV and ϵ = 10^{-3}, $\tau_{A'} \sim 10^{\text{-15}}$ s, ct \sim 2 μm

- Decay to hidden sector particles
 - If $M_{A'}>2~m_{\chi}$, then $~A' \rightarrow \chi \chi$
 - Not suppressed by $\epsilon^{_2}$
- Not decay at all (at least within the experime
 - For small ϵ^2 and $M_{A'} < 2 m_{\chi}$
 - Decays into photons, if $M_{A'} < 2 m_e$; A' $\rightarrow \gamma \gamma \gamma$

What do we see at experiments?

- The final detection is due to signals in the detectors that are generated only by the electromagnetic interactions!
 - Ionization and charge collection
 - Excitation and photons collection
 - We can detect charged particles (they ionize)

- Steps to consider when planning/doing an experiment
 - How the Dark Photon can be produced?
 - What would be the experimental signature?
 - What is the major background to it?
 - What is the model that the experimental setup is (is not) sensitive to

Experiment vs Theory

• Theory: transition rates and cross-sections

$$\Gamma = \int |M|^2 d\Phi$$

• Experiment:

number of events N_{events}

• In theory: $N_{events} \sim \int \Gamma dt = \int dt \int |M|^2 d\Phi$

Experiment vs Theory

• Theory: transition rates and cross-sections

$$\Gamma = \int |M|^2 d\Phi$$

• Experiment:

number of events N_{events}

- In theory: $N_{events} \sim \int \Gamma dt = \int dt \int |M|^2 d\Phi$
- Experiment (simplified)

 $N_{events} \sim \int dt \times \varepsilon_{trig} \times (\prod_i \varepsilon_i) \int |M|^2 d\Phi_{exp} + N_{bkg}$

- ϵ_{trig} efficiency for recording the event
- ϵ_i efficiency for detecting the i-th final state particle
- $d\Phi_{exp}$ experimental phase space (or acceptance)
- N_{bkg} background contribution

Experiment vs Theory

• Theory: transition rates and cross-sections

$$\Gamma = \int |M|^2 d\Phi$$

• Experiment:

number of events N_{events}

- In theory: $N_{events} \sim \int \Gamma dt = \int dt \int |M|^2 d\Phi$
- Experiment (simplified)

 $N_{events} \sim \int dt \times \varepsilon_{trig}(t) \times (\prod_i \varepsilon_i(t)) \int |M|^2 d\Phi_{exp}(t) + N_{bkg}(t)$

- ϵ_{trig} efficiency for recording the event
- ϵ_i efficiency for detecting the i-th final state particle
- $d\Phi_{exp}$ experimental phase space (or acceptance)
- N_{bkg} background contribution

What do we measure

• Number of events, satisfying given requirements

N signal = N measured - N background

- Sensitivity estimation: statistical uncertainty of the simulated (determined from data) background taken as a reference to determine the 90% (or 68 %) confidence level exclusion limits
- In case of modelling the events:

 $\sigma_{tot}(N) \sim (\sqrt{N})_{stat} \oplus (\delta_{model} * N)$

- Precision SM description of the processes

Zero background (signal) experiments	Non background free experiments
 Sensitivity scales as 1/N More difficult to convince why the detected number of events is 0 	 Sensitivity scales as 1/ (√N) Probe the technique and understanding through background modelling

Unconstrained initial process

- The initial kinematics quantities are not known
 - Cannot fix the initial state that creates the Dark Photon
 - $e^- + N \rightarrow e^- + N + A'$ (A'-strahlung)
 - Production in EM/hadronic showers
 - Thin target or beam dump experiments
- Reconstruct or look for specific signatures of the final state
 - Dark Photon decaying into SM particles
 - Thin target and beam dump
 - Dark Photon decaying into DM particles
 - Seek for DM particles scattering inside the detectors

Beam dump

• Production: A'-strahlung, shower, absorption of secondaries

- Number of interactions depend on the total number of beam particles
 - Highest possible beam intensity
- The number of the events one should expect depends on
 - Total particles on target
 - A' coupling
 - A' mass
 - Geometry of the setup

$$N \simeq \frac{N_e N_0 X_0}{A} \int dE_{\gamma'} \int dE_e \int dt \left[I_e \frac{1}{E_e} \left. \frac{d\sigma}{dx_e} \right| e^{-\frac{L_{\rm sh}}{l_{\gamma'}}} \left(1 - e^{-\frac{L_{\rm dec}}{l_{\gamma'}}} \right) \right] \mathrm{BR}_{l\bar{l}}$$
$$x_e = \frac{E_{\gamma'}}{E_e}$$

Beam dump

- Beam energy
 - Boosts the produced DP
 - Gives access to higher masses
- Initial flux
 - Dependence is weaker than on E_{beam}
- Inactive region length
 - Crucial for the access to high ϵ
 - But leakage from the target ...

Thin target

- Fixed thin target:
 - Lower production rate
 - Bacground contribution

- Naive "everything is signal" does not work
 - Kinematical reconstruction of the final state
 - Peaks in the e⁺e⁻ invariant mass spectrum

Constrained initial process

- Initial state is carefully prepared
 - A' as a product of SM particles decays: π^0 , ρ , η
 - e+e- colliders
 - Annihilation
- Possible A' final states
 - A' \rightarrow SM particles, all states reconstruction
 - Provides significant background suppression
 - A' \rightarrow DM particles
 - Determination of A' properties through missing momentum/energy/mass

Dark Photon in meson decays

Batell, Pospelov and Ritz, PRD 80, 095024 (2009)

 e^+

- Identify a solid source of π^0
 - @ colliders: $e^+e^- \rightarrow Y, \rho, \eta, \phi$
 - In target production
 - Background from beam-target interaction
 - Use a cascade process, where π^0 is one of the products
 - $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}, K^{\pm} \rightarrow \mu^{\pm}\pi^{0}\nu$ (Kµ3)

 $\pi^{0} \rightarrow ee\gamma (\pi^{0}D)$

• Br(K[±] $\rightarrow \pi^{\pm}\pi^{0} \rightarrow \pi^{\pm} e^{+}e^{-}\gamma$) = 2.4 x 10⁻³

A' in annihilation e^+ γ e^+ $p_{elec} - p_{\gamma}^2$ Non interacted beam

- Positron beam on a thin target
- Positron momentum is determined by the accelerator characteristics
- Missing mass resolution: annihilation point, $E_{\gamma}^{}, \phi_{\gamma}^{}$

$$\frac{\sigma(e^+e^- \to U\gamma)}{\sigma(e^+e^- \to \gamma\gamma)} = \frac{N(U\gamma)}{N(\gamma\gamma)} * \frac{Acc(\gamma\gamma)}{Acc(U\gamma)} = \epsilon^2 * \delta,$$

- Clear 2 body correlation
- Background minimization
 - Best possible resolution on energy/angle measurement
 - Dominant process in e+/e- interactions with matter is bremsstrahlung
 - Photons vetoing
 - Minimize the interaction remnants + vetoing

Cross section enhancement with the approach of the production threshold

Backgrounds

- Bremsstrahlung in the field of the target nuclei
 - Photons mostly @ low energy, background dominates the high missing masses
 - An additional lower energy positron that could be detected due to stronger deflection
- 2 photon annihilation
 - Peaks at $M_{miss} = 0$
 - Quasi symmetric in gamma angles for $E_{\gamma} > 50 \text{ MeV}$
- 3 photon annihilation
 - Symmetry is lost decrease in the vetoing capabilities
 - Does not peak
- Radiative bhabha scattering
 - Topology close to bremsstrahlung

Venelin Kozhuharov, XIX LNF Spring School

HPS experiment

- Electron beam (2.2 and 6.6 GeV, up to 500 nA) on a thin tungsten target (0.25% X₀)
- A'-strahlung production
- Decay channel $A' \rightarrow e^+e^-$
- Silicon vertex tracker (1 m long) inside dipole magnet, 6 layers (dual sensor)
 - Particle momenta, Vertices
 - 6.4 μ m hit resolution, σ (t) = 2.5 ns
- Lead tungstate electromagnetic calorimeter

Fast energy measurement Trigger definition

HPS sensitivity

Venelin Kozhuharov, XIX LNF Spring School

Dark photon @ Mainz

- Tradition in dark photon physics A1 @ MAMI
- New accelerator: MESA (Mainz Energy-recovering Superconducting Accelerator)
 - Energy up to 155 MeV
 - Current > 1 mA

Planned commissioning: 2020

MAGIX @ MESA

The MAinz Gas Internal EXperiment

Achim Denig, Dark Sectors Workshop, 28-30 Apr., SLAC

- Gas jet target
 - Supersonic gas /cluster jet
 - High gas density (10¹⁹/cm²)
 - O(mm) target length
 - Windowless

- Double arm high resolution spectrometers
 - Aim for $\Delta p/p \sim 10^{-4}$
 - Acceptance +- 50 mrad

MAGIX @ MESA

ω

- Two position detectors
 - Focal plane
 - Direction measurement
- GEM detectors considered
 - 0.7% X0
 - High rate capability
 - 2D strip readout
 - Should aim for 50μm coordinate resolution

Venelin Kozhuharov, XIX LNF Spring School

 $m_{\gamma'}$ [GeV/c²]

9.05.2018

Missing energy technique

• NA64 experiment @ CERN SPS

Phys.Rev. D97 (2018) no.7, 072002

no energy in Veto + HCAL

NA64 results

- Sensitive to DP production through radiation in the shower development
- Using reweighting factors to account for differences between GEANT4 MC and DATA
- Zero events in the signal region
 - Expected 0.5 SM background

Venelin Kozhuharov, XIX LNF Spring School

DM scattering: BDX

arXiv:1607.01390 [hep-ex]

Beam Dump eXperiment

- χ production
 - High-energy, high-intensity e⁻ beam impinging on a dump
 - $-\chi$ particles pair-produced radiatively, trough A'

- χ detection
 - Detector placed behind the dump, O(10m)
 - $-\chi$ scattering trough A'
 - Different signals depending on the interaction (e⁻elastic, p quasi-elastic,.)

- Lol submitted to JLab PAC positive feedback
- Preparation of a full Proposal ongoing
- Interesting opportunities for a phase-1 run @ other facilities

DM scattering: BDX

Beam Dump eXperiment

x production

•

- High-energy, high-intensity e⁻ beam impinging on a dump
- $-\chi$ particles pair-produced radiatively, trough A'

- x detection •
 - Detector placed behind the dump, O(10m)
 - $-\chi$ scattering trough A'
 - Different signals depending on the _ interaction (e⁻elastic, p quasi-elastic,.)

100

m₄' (MeV)

1000

- Preparation of a full Proposal ongoing ٠
- Interesting opportunities for a phase-1 run @ other facilities

Constrained initial state

- Recall:
 - Initial state with fully determined kinematics
 - A single missing particle in the final state can be reliably identified
 - I case the full final state can be reconstructed → reduced background and consistency checks

Anomalies in nuclear transitions

- Carefully prepared initial state
 - p + ⁷Li -> 8Be*, populating high energy excited state

Anomalies in nuclear transitions

PRL 116, 042501 (2016)

- Anomalous angular and invariant mass distributions in the IPC process
- Several indications in the last few decades
- New experiment to look for this effect exploiting He
- $E-\Delta E$ plastic scintillator detector, in the plane transversal to the beam
- The anomaly observed at ~17 MeV difficult to be interpreted within nuclear physics so far...

NA48/2: $K^{\pm} \rightarrow \pi^{\pm}\pi^{0} \rightarrow \pi^{\pm} A'\gamma \rightarrow \pi^{\pm} e^{+}e^{-}\gamma$

The NA48 Detector

- µ-veto counters Hadron calorimeter Liquid krypton calorimeter Fe Hodoscope Anti counter Wire chamber 4 Wire chamber 3 Anti counter Magnet Wire chamber 2 Wire chamber 1 10 m **Beam direction** Beam pipe
- Magnetic spectrometer

 (DCH)
 4 drift chambers
 p⊥^{kick} = 120 MeV/c
 △p/p = 1% ⊕ 0.044%*p [GeV/c]
- <u>Hodoscope</u>
 σ(t) = 150 ps
- Liquid Krypton Calorimeter
 △E/E ≅ 3.2%/√E ⊕ 9%/E ⊕ 0.42%
- <u>Hadron Calorimeter</u>, <u>Muon</u> <u>counters</u>, <u>Anticounters</u>, <u>Kaon</u> <u>Beam Spectrometer</u>

Venelin Kozhuharov, XIX LNF Spring School

9.05.2018

Dark Photon in meson decays PLB746 (2015) 178

- Combined $\pi^0 \rightarrow ee\gamma$ reconstruction in $K \rightarrow \pi^+\pi^0$ and $K\mu3$
- Study the Mee distribution searching for excess
- Sample of $1.7 \times 10^7 \pi^0$
- Precise accounting for
 - Trigger efficiency
 - e+e- mass spectrum
 - Acceptance
 - Resolution

Venelin Kozhuharov, XIX LNF Spring School

Dark photon in π^0 decay

- Covering the gap for $(g_{\mu}-2)$ in the visible DP decays

NA62: extensive search for NP

JINST 12 (2017), P05025

NA62: extensive search for NP

• Total number of kaons in the fiducial region – X*10¹³

e⁺e⁻ colliders

- The initial state is given by the beam energies
 - P_{e^+} and P_{e^-} are known
 - $M_{|i|>}$ determines the event kinematics
- Final state:
 - A' associate production
 - Can study both scenarios
 - A' \rightarrow ff, and A' $\rightarrow \chi \chi$

BaBar search for invisible DP

Y(3S) data

- 53 fb⁻¹ of data close to Y resonances
- Single photon trigger
- BDT discrimination between signal and bacground
 - $e^+e^- \rightarrow \gamma\gamma$
 - $e^+e^- \rightarrow e^+e^-\gamma$ (radiative Bhabha)

Venelin Kozhuharov, XIX LNF Spring School

KLOE and Dark Photon

- Multimode searches for DP, including
 - muon final states
 - Dark higgs states
 - Hadron final states
 - Electron final states

KLOE and Dark Photon

Talk of Elena Perez Del Rio

 $\varphi \rightarrow \eta U \text{ with } U \rightarrow e^+ e^- \qquad \begin{array}{l} Phys. \ Lett \ B \ 706 \ (2012) \ 251-255 \\ Phys. \ Lett \ B \ 720 \ (2013) \ 111-115 \end{array}$ $e^+ e^- \rightarrow U\gamma \text{ with } U \rightarrow \mu^+ \mu^- \qquad Phys. \ Lett \ B \ 736 \ (2014) \ 459-464 \qquad \\ e^+ e^- \rightarrow Uh' \text{ with } h' \rightarrow \text{ invisible} \qquad Phys. \ Lett. \ B747 \ (2015) \ 365-372 \qquad \\ e^+ e^- \rightarrow U\gamma \text{ with } U \rightarrow e^+ e^- \qquad Phys. \ Lett. \ B750 \ (2015) \ 633 \qquad \\ e^+ e^- \rightarrow U\gamma \text{ with } U \rightarrow \pi^+ \pi^- \qquad Phys. \ Lett. \ B757 \ (2016) \ 356-361 \qquad \\ \end{array}$

- LNF is already a Dark Sector physics laboratory
- New results to come
 - Including single photon detection

PADME

Positron Annihilation into Dark Matter Experiment

Talks of Clara Taruggi and Federica Oliva

Adv. HEP 2014 (2014) 959802

- Small scale fixed target experiment
 - e⁺ @ Frascati Beam test facility
 - Solid state target
 - Charged particles detectors
 - Calorimeter

PADME @ BTF

	Electrons	Positrons
Maximum beam energy (E _{beam})[MeV]	750 MeV	550 MeV
Linac energy spread [Dp/p]	0.5%	1%
Typical Charge [nC]	2 nC	0.85 nC
Bunch length [ns]	1.5 – 40 (can reach 200 in 2016)	
Linac Repetition rate	1-50 Hz	1-50 Hz
Typical emittance [mm mrad]	1	~1.5
Beam spot s [mm]	<1 mm	
Beam divergence	1-1.5 mrad	

Diamond target

Polycrystalline diamonds

- 100 mm thickness:
- 16 × 1 mm² strip and X-Y readout in a single detector
- Samples with graphitized and metalized strips available
- PADME prototype 20 × 20 mm² produced and tested 2015
- Low noise CSA integrated in the 16 channel chip AMADEUS from IDEAS

Motorized support structure reac vacuum tests ongoing

- Test beam results (~5000 e):
 - good efficiency

resolution on the position of the beam center < 0.2 mm

• FE electronics defined

Calorimeter and vetoes

 χ^2 / ndf

а

b С

616 BGO crystals, 2 x 2 cm² cross section

500

600

700

800

900 1000 1100 Energy (MeV)

Efficiency > 99%,

- $\sigma(t) < O(1 \text{ ns})$
- Momentum information through • correlation with the particle position

Construction

Sensitivity

2.5x10¹⁰ fully GEANT4 simulated 550MeV e+ on target events

Number of BG events is extrapolated to 1x10¹³ electrons on target

$$\frac{\Gamma(e^+e^- \to A'\gamma)}{\Gamma(e^+e^- \to \gamma\gamma)} = \frac{N(A'\gamma)}{N(\gamma)} \frac{Acc(\gamma\gamma)}{Acc(A'\gamma)} = \varepsilon \cdot \delta$$

PADME:

2 years of data taking at 60% efficiency with bunch length of 200 ns 4x10¹³ EOT = **20000 e**⁺/bunch × 2 × **3.1.10**⁷s x 0.6 · **49 Hz**

• Operating in paralel with the ongoing VEPP-3 activities

VEPP 3

Possible operation in 3-4 years with the by-pass beam line

MMAPS

- Approach similar to PADME: Missing Mass A-Prime Search
 - $\rm E_{\rm beam}$ = 1.8 -- 5.3 GeV, $\rm I_{\rm beam}$ $^{\sim}$ 2.3 nA at target,
 - ~millisecond spills @ 60Hz
 - pulse structure: 168ns

MMAPS design and sensitivity

- Charged particle vetoes in front of the calorimeter
- CsI(TI) crystal calorimeter (from CLEO), PMTs instead of photodiodes (time properties)
- Issues with overlap @ maximal luminosity: good double pulse separation necessary

Extend the accessible region up to $M_{A'} = 74 \text{ MeV}$

Missing mass searches

Invisibly Decaying Dark Photon

Venelin Kozhuharov, XIX LNF Spring School

Missing mass searches

	PADME	MMAPS	VEPP3
Place	LNF	Cornell	Novosibirsk
Beam energy	550 MeV	Up to 5.3 GeV	500 MeV
M _{A'} limit	23 MeV	74 MeV	22 MeV
Target thickness	2x10 ²² e ⁻ /cm ²	O(2x10 ²³) e ⁻ /cm ²	5x10 ¹⁵ e ⁻ /cm ²
Beam intensity	8 x 10 ⁻¹¹ mA	2.3 x 10 ⁻⁶ mA	30 mA
e⁺e⁻ → γγ rate [s⁻¹]	15	2.2 x 10 ⁶	1.5 x 10 ⁶
ε² limit (plateau)	10 ⁻⁶ (10 ⁻⁷ SES)	10 ⁻⁶ - 10 ⁻⁷	10-7
Time scale	2018	?	2020 (ByPass)
Status	Preparation for run	Not funded by NSF	Proposal

Exploiting further the annihilation

Talks of Anish Ghoshal and Cristian David Carvajal Ruiz

- Associate production of dark photon vs resonant annihilation
- A promising technique to cover the gap between dump and fixed (or no) target experiments
 - However, needs to control the leakage from the beam shower...

Conclusion

Venelin Kozhuharov, XIX LNF Spring School

Conclusion

- Dark photons may be just at the door
- Many projects in the past, many ongoing projects, many new to come on stage
- A variety of techniques applied to the Dark Photons studies
- Mass range from O(MeV) O(GeV) covered
- And recall most of the experimental searches are not only for DP, but for any excess of events with a specific topology