The Mu2e experiment at Fermilab: R&D, design and status

Eleonora Diociaiuti
LNF-INFN and Tor Vergata university
On behalf of the Mu2e collaboration
Outline

- Charged Lepton Flavour Violation (CLFV) processes
- Muon Conversion
- Mu2e experiment
- Conclusion
Charged Lepton Flavour Violation

- CLFV processes are strongly suppressed in the SM
 - Not forbidden due to the neutrino oscillation
 - Negligible (rate $\sim \Delta M^4/\langle M_W^4 \rangle < 10^{-50}$)

- Different models of New Physics (NP) predict rates observable at next generation CLFV experiments → An observation will be a clear evidence of Physics Beyond the Standard Model (BSM)

<table>
<thead>
<tr>
<th>Process</th>
<th>Current Limit</th>
<th>Next Generation exp</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau \to \mu \eta$</td>
<td>BR < 6.5 E-8</td>
<td></td>
</tr>
<tr>
<td>$\tau \to \mu \gamma$</td>
<td>BR < 6.8 E-8</td>
<td></td>
</tr>
<tr>
<td>$\tau \to \mu \mu \mu$</td>
<td>BR < 3.2 E-8</td>
<td></td>
</tr>
<tr>
<td>$\tau \to eee$</td>
<td>BR < 3.6 E-8</td>
<td></td>
</tr>
<tr>
<td>$K_L \to e\mu$</td>
<td>BR < 4.7 E-12</td>
<td></td>
</tr>
<tr>
<td>$K^* \to \pi^+e^-\mu^+$</td>
<td>BR < 1.3 E-11</td>
<td></td>
</tr>
<tr>
<td>$B^0 \to e\mu$</td>
<td>BR < 7.8 E-8</td>
<td></td>
</tr>
<tr>
<td>$B^+ \to K^* e\mu$</td>
<td>BR < 9.1 E-8</td>
<td></td>
</tr>
<tr>
<td>$\mu^+ \to e^+\gamma$</td>
<td>BR < 4.2 E-13</td>
<td>10^{-14} (MEG)</td>
</tr>
<tr>
<td>$\mu^+ \to e^+e^-e^-$</td>
<td>BR < 1.0 E-12</td>
<td>10^{-16} (PSI)</td>
</tr>
<tr>
<td>$\mu N \to eN$</td>
<td>$\mathcal{R}_{\mu e} < 7.0$ E-13</td>
<td>10^{-17} (Mu2e, COMET)</td>
</tr>
</tbody>
</table>

- Muon channels are ideal for CLFV search
 - Clean topologies
 - Large rates
Muon CLFV - time line

\[\mu \rightarrow e\gamma \]

\[\mu \rightarrow 3e \]

\[\mu N \rightarrow eN \]

Current best limits:
BR(\(\mu \rightarrow e\gamma\)) < \(4.2 \times 10^{-13}\) MEG 2016
BR(\(\mu \rightarrow 3e\)) < \(1 \times 10^{-12}\) SINDRUM 1998
\(R_{\mu e} < 6.1 \times 10^{-13}\) SINDRUM-II 2006
\(R_{\mu e} \sim 10^{-17}\) \textbf{Mu2e goal}

R. H. Bernstein and P. S. Cooper, Phys. Rept. 532 (2013) 27

09/05/18
Muon CLFV – BSM theory

\[L_{\text{CLFV}} = \frac{m_{\mu}}{(\kappa + 1)\Lambda^2} \bar{\mu} R \sigma_{\mu\nu} e_L F^{\mu\nu} + \frac{\kappa}{(1 + \kappa)\Lambda^2} \bar{\mu}_L \gamma_\mu e_L (\bar{u}_L \gamma^\mu u_L + \bar{d}_L \gamma^\mu d_L) \]

LOOP TERM

CONTACT TERM

Heavy Neutrinos

\[|U_{\mu N}| U_{eN} |^2 \approx 8 \times 10^{-13} \]

Second Higgs Doublet

\[g(H_{\mu e}) \approx 10^{-4} g(H_{\mu t}) \]

Supersymmetry

rate \(\approx 10^{-15} \)

Model which can be probed also by \(\mu \rightarrow e\gamma \) searches

Direct coupling between quarks and leptons, better accessed by \(\mu N \rightarrow eN \)

Heavy Z’ Anomalous Z Coupling

\[M_{Z'} = 3000 \text{ TeV/c}^2 \]

Compositeness

\[\Lambda_c \approx 3000 \text{ TeV} \]

M$_{\text{LQ}}$ = 3000 (\(\lambda_{\mu\mu} \lambda_{\phi\phi} \))$^{1/2}$ TeV/c2
Mu2e physics reach

Muon conversion is a unique probe for physics BSM:

- Broad discovery sensitivity across all models
- Mass scale discovery up to ~ 10000 TeV, significantly above the direct reach of LHC
- Clear experimental signature: neutrinoless and mono-energetic electron:
 - $E_e = 104.96$ MeV
Experimental technique

Mu2e will look for coherent muon conversion into a muonic atom

\[\mu^- Al \rightarrow e^- Al \]

- Generation of a \(\mu^- \) beam
 - Low momentum (<100 MeV/c)
 - High intensity “pulsed” rate
- Stop the beam in a Al target

Decay In Orbit (DIO) (BR=39%)

Muon Capture (BR=61%)

The conversion process results in a clear signature of a single electron (CE) with a mono-energetic spectrum close to the muon rest mass.
Mu2e sensitivity

- Measure the ratio of the μ-e conversion wrt the conventional μ capture

$$R_{\mu e} = \frac{\mu^- + N(A, Z) \rightarrow e^- + N(A, Z)}{\mu^- + N(A, Z) \rightarrow \nu_{\mu} + N(A, Z - 1)} < 8.4 \times 10^{-17}$$

- To obtain a Single Event Sensitivity of 3×10^{-17}
 - 10^{18} stopped muons
 - High background suppression
Mu2e Design

PRODUCTION SOLENOID
- Protons hitting the target and producing mostly π
- Graded magnetic field reflects slow forward π

TRANSPORT SOLENOID
- Selection and transportation of low momentum μ^-

DETECTOR SOLENOID
- Capture μ on the Al target
- Momentum measurement in the tracker and energy reconstruction with calorimeter
- CRV to veto cosmic rays events
Detectors

Some hits

Lower P_T

Larger P_T
Tracker

- 3 m long, 1.4 m diameter in a 1 T uniform B field
- Maximize/minimize the acceptance for CE/DIO
- ~20000 straw drift tubes organized into 18 stations, 2 planes per station
- Each straw is 5 mm diameter, with 25 µm sense wire, 15 µm Mylar wall

Momentum resolution <170 keV/c (@100 MeV/c)

Timing resolution ~ 1 ns

Spatial resolution ~ 100 µm
Electromagnetic Calorimeter

- Energy resolution < 5% (@ 100 MeV)
- Timing resolution < 0.5 ns
- Spatial resolution < 1 cm

- 2 annular disks with 674 CsI (30x30x200) mm³ crystals each
- Crystal read-out by 2 custom SiPMs
- Work in vacuum and B = 1T

- Acceptance optimized to observe conversion electron Ee~105 MeV
- PID and e/µ discrimination
- Help the track reconstruction
Cosmic Ray Veto (CRV)

- CR are the major source of background (1 fake CE event per day)
- CRV composed of 4 layers of overlapping scintillator
- CRV is placed around the DS and part of the TS
- Required efficiency 0.9999
Mu2e expectation with full simulation

Discovery sensitivity accomplished with 3 year of running and background suppression to <0.4 event total
Conclusions

- The Mu2e experiment is a discovery experiment looking for the CLFV event of a coherent conversion of muon into electron in the electric field of a nucleus.
- Mu2e will improve the sensitivity on conversion experiment of ~ 4 order of magnitude.
- It provides discovery capabilities over a wide range on NP model.
- Construction phase: 2017-2019
- Installation in 2020
- Commissioning phase will begin in 2021
- Start thinking about Mu2e-II ➔ increase the intensity x10 and the sensitivity.
These are SuSy benchmark point for which LHC has discovery sensitivity

Some of these will be observable by MEG/Belle-2

All of these will be observable by Mu2e

<table>
<thead>
<tr>
<th>Process</th>
<th>SPS 1a CKM $U_{e3} = 0$</th>
<th>SPS 1b CKM $U_{e3} = 0$</th>
<th>SPS 2 CKM $U_{e3} = 0$</th>
<th>SPS 3 CKM $U_{e3} = 0$</th>
<th>Future Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{BR}(\mu \rightarrow e\gamma)$</td>
<td>$3.2 \cdot 10^{-14}$</td>
<td>$3.8 \cdot 10^{-13}$</td>
<td>$4.0 \cdot 10^{-13}$</td>
<td>$1.2 \cdot 10^{-12}$</td>
<td>$1.3 \cdot 10^{-15}$</td>
</tr>
<tr>
<td>$\text{BR}(\mu \rightarrow eee)$</td>
<td>$2.3 \cdot 10^{-16}$</td>
<td>$2.7 \cdot 10^{-15}$</td>
<td>$2.9 \cdot 10^{-15}$</td>
<td>$8.6 \cdot 10^{-15}$</td>
<td>$9.4 \cdot 10^{-18}$</td>
</tr>
<tr>
<td>$\text{CR}(\mu \rightarrow e\text{ in Ti})$</td>
<td>$2.0 \cdot 10^{-15}$</td>
<td>$2.4 \cdot 10^{-14}$</td>
<td>$2.6 \cdot 10^{-15}$</td>
<td>$7.6 \cdot 10^{-14}$</td>
<td>$1.0 \cdot 10^{-16}$</td>
</tr>
<tr>
<td>$\text{BR}(\tau \rightarrow e\gamma)$</td>
<td>$2.3 \cdot 10^{-12}$</td>
<td>$6.0 \cdot 10^{-13}$</td>
<td>$3.5 \cdot 10^{-12}$</td>
<td>$1.7 \cdot 10^{-12}$</td>
<td>$1.4 \cdot 10^{-13}$</td>
</tr>
<tr>
<td>$\text{BR}(\tau \rightarrow eee)$</td>
<td>$2.7 \cdot 10^{-14}$</td>
<td>$7.1 \cdot 10^{-15}$</td>
<td>$4.2 \cdot 10^{-14}$</td>
<td>$2.0 \cdot 10^{-14}$</td>
<td>$1.7 \cdot 10^{-15}$</td>
</tr>
<tr>
<td>$\text{BR}(\tau \rightarrow \mu\gamma)$</td>
<td>$5.0 \cdot 10^{-11}$</td>
<td>$1.1 \cdot 10^{-8}$</td>
<td>$7.3 \cdot 10^{-11}$</td>
<td>$1.3 \cdot 10^{-8}$</td>
<td>$2.9 \cdot 10^{-12}$</td>
</tr>
<tr>
<td>$\text{BR}(\tau \rightarrow \mu\mu\mu)$</td>
<td>$1.6 \cdot 10^{-13}$</td>
<td>$3.4 \cdot 10^{-11}$</td>
<td>$2.2 \cdot 10^{-13}$</td>
<td>$3.9 \cdot 10^{-11}$</td>
<td>$8.9 \cdot 10^{-15}$</td>
</tr>
</tbody>
</table>
Background for Mu2e

- **Intrinsic physics background:**
 - Muon Decay in Orbit (DIO) → end point @ signal energy
 - Radiative Muon Capture → πN → γN'; γ → e⁺e⁻
 - Neutron from muon nuclear capture
 - Proton from muon nuclear capture

- **Beam related backgrounds:**
 - Radiative Pion Capture (RPC)
 - Beam electron
 - Muon decay in flight
 - Neutron
 - Antiprotons producing pions when annihilating in the target

- **Cosmic rays**
DIO background

- Electron energy distribution from the decay of bound muons follows a modified-Michel spectrum:

- The Michel spectrum is distorted by the presence of the nucleus and the electron can have an energy similar to the one of CE if neutrino are almost at rest

→ **To separate DIO endpoint from CE line Mu2e needs an high Resolution Spectrometer**
Minimizing prompt background

- Prompt backgrounds arise from the interaction occurring at the stopping target
 - Radiative Pion Capture (\(\tau_{\pi^{Al}} = 26 \) ns)
 \[\pi^- N \rightarrow \gamma N^* \rightarrow e^+ e^- N^* \]
 - \(\pi/\mu \) decay in flight

- Muonic atomic life >> prompt background
- Narrow pulsed proton beam
- Delayed signal window starting 700 ns after the initial proton pulse
- Out-of-time proton suppressed by \(O(10^{10}) \)

E. Diociaiuti | The Mu2e experiment
A typical Mu2e event: calo track seeding

500 - 1695 ns windows

± 50 ns around conversion electron

- Search for tracking hits with time and azimuthal angle compatible with the calorimeter clusters (|ΔT| < 50 ns) \(\rightarrow\) **simpler pattern recognition**
What’s next

Signal?
- Yes
 - Precision measurement
 - Measure $R_{\mu e}$ for different targets
- No
 - Higher search sensitivity
 - Accelerator upgrade

Cirigliano, et al., PRD 80, 013002 (2009)

Vector Z-penguin
Vector γ-penguin
Dipole e.g. SUSY GUTS
Scalar e.g. SUSY SeeSaw