

Construction and test of the Micromegas SM1 chambers for the upgrade of the forward muon spectrometer in the ATLAS experiment

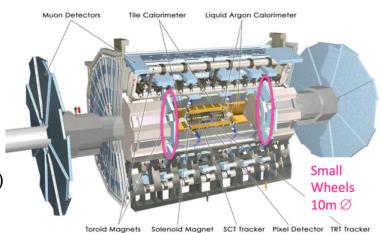
Giada Mancini^(a)

(a) LNF INFN

LNF Spring School, Frascati 7-11 May 2018

• The Small Wheel (SW) in ATLAS and the need for a new detector in view of the

future LHC runs

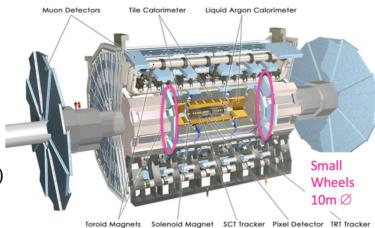

- Brief overview of the working principles and structure of a MicroMeGaS (MM)
- MM in ATLAS: New Small Wheel (NSW)
- Production of the Small Module 1 (SM1) by INFN
- Test on the first prototypes at the Cosmic Ray Station (CRS LNF) and at H4 (CERN)

MM performances

The actual SW (Small Wheels):

- the first muon spectrometer station in the forward region (End-Cap)
- angular coverage: $1.3 < |\eta| < 2.7$
- between the End-Cap calorimeter and the toroid ($z = \pm 7 \text{ m}$)
- CSC e MDT (TGCs per la 2 coord.)

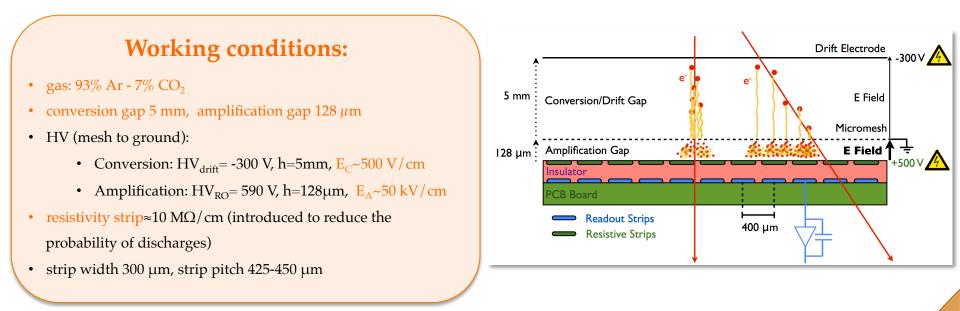
An improvement in the performances is required both for the trigger and tracking in view of the increasing luminosity for the future LHC runs (5-7 10³⁴ cm⁻² s⁻¹)


HL-LHC: Big Wheel EM MDT Chamber Level 1 End-Cap (MDT) expected Efficiency 80 trigger, only BW, frequency > 5Single tube 60 30 mm Ø tubes: dominated by fake MHz / tube New Small Wheel 40 --- Chamber (2×4)trigger events (type Actual picture -> efficiency 20 BeC) end-cap decrease toroid 400 600 800 200 1000 1200 1400 Hit Rate (kHz/Tube) significantly

MM performances

The actual SW (Small Wheels):

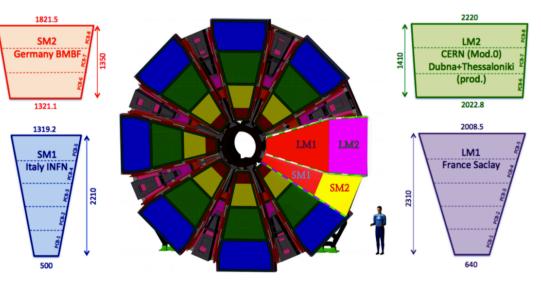
- the first muon spectrometer station in the forward region (End-Cap)
- angular coverage: $1.3 < |\eta| < 2.7$
- between the End-Cap calorimeter and the toroid ($z = \pm 7 \text{ m}$)
- CSC e MDT (TGCs per la 2 coord.)

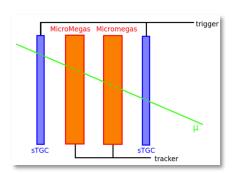

An improvement in the performances is required both for the trigger and tracking in view of the increasing luminosity for the future LHC runs (5-7 10³⁴ cm⁻² s⁻¹)

UI IUC Level 1 Need a detector: trigger, fast and able to perform a precision tracking (~100 µm per plane) ubes: domina tube ber (2×4) able to cope with the increasing background particle flux (pileup) as the trigger luminosity increases BeC) 0 1400 reject fake triggers (Hz/Tube)

MicroMeGaS (Micro Mesh Gaseous Structure) are micropattern gaseous detectors

- charged particles ionize the gas in the detector volume (100 pairs/cm in Ar:CO₂ 93:7 for μ)
- e⁻ produced by ionization are transported to the drift field in the drift region, traverse the mesh and are amplified by avalanches (high electric field between micro-mesh and read out strips).
- signal collected on resistive strips and transferred by capacitive coupling to the read-out strips
- amplification factor ~ 10^4 and transparency of the mesh to electrons ~1 ($E_A \sim 100 E_C$)
- fast evacuation of positive ions: 100 ns allowing to work in high luminosity regimes


The NSW


MicroMegas:

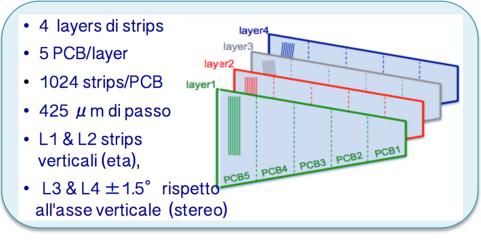
- good tracking capability (~100 μm per layer)
- able to work in high luminosity regimes (15 kHz/cm²)
- $\epsilon > 97\%$ and $\sigma < 100 \ \mu m$!
- -> NSW of the ATLAS experiment!

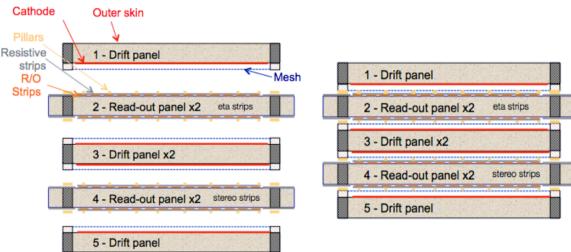
NSW, wheel structure:

- 8 large sectors (LM) and 8 small ones (SM)
 (2 MM modules per sector)
- MM aim: precision tracking (between 2 sTGC chambers for trigger)
- p_T resolution ~15% at 1TeV
- 4 type of chambers: LM 1-2, SM 1-2
- production shared between several institutes and industries: Italy (SM1), Germany (SM2), France (LM1), Russia/Greece (LM2 – CERN for drawings and first prototypes)

L' INFN is involved in the construction of 32 SM1 chambers (~2m²) in order to

reconstruct muon tracks trough the 4 layers of which they are composed

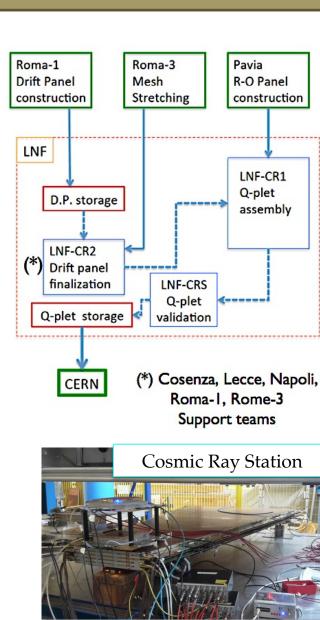

(forming a quadruplet):


2 of the 4 layers have strips inclined by ±1.5° in order to reconstruct the 2nd coordinate

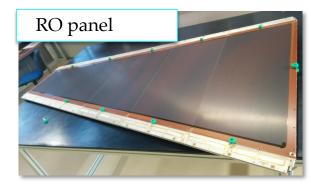
In order to compose a quadruplet, 5 panels are needed:

- 2 read out panels (1 eta and 1 stereo)
- 2 external drift panels
- 1 central drift panel

Giada Mancini (LNF INFN)



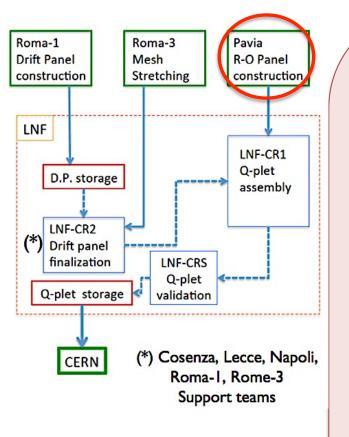
SM1 production scheme



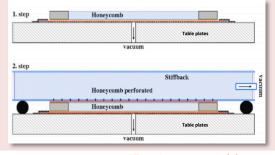
Giada Mancini (LNF INFN)

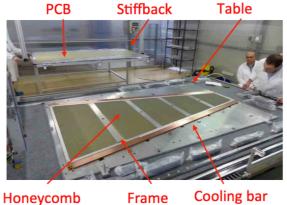
Drift panel

Drift panel finalization

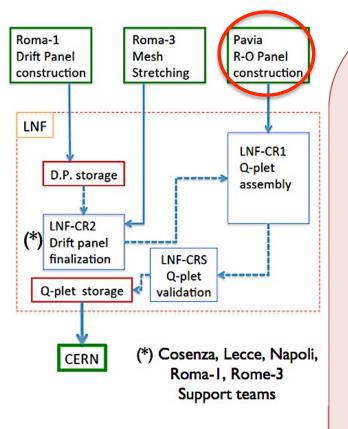


Mesh stretching


RO panel construction

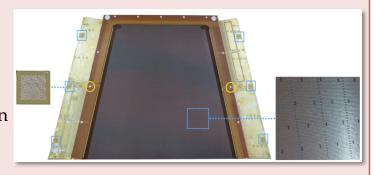

5x2 trapezoidal PCB sheets Gluing technique: **Stiffback**

- one PCB plane is sucked on the Al plane fixed on the granite table, the other one on the stiffback (P/Pext ~ 0.2)
- Glue distributed automatically, the internal components are positioned
- stiffback rotated and positioned on the assembled structure
- panel planarity < 37 μm


lstituto Nazionale di Fisica Nucleare

Laboratori Nazionali di Frascati

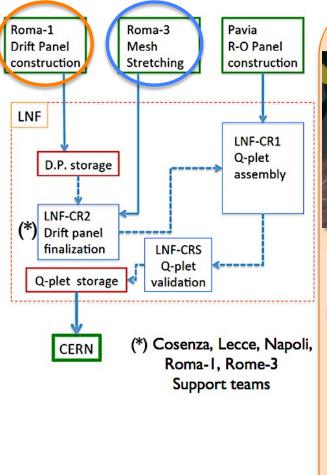
RO panel construction

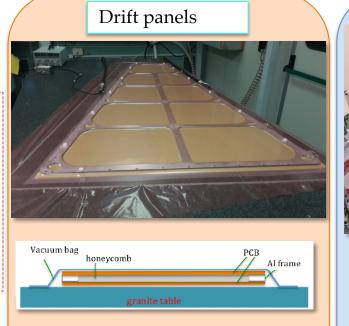


Strip alignment procedure

Mechanical alignment (pin, supports):

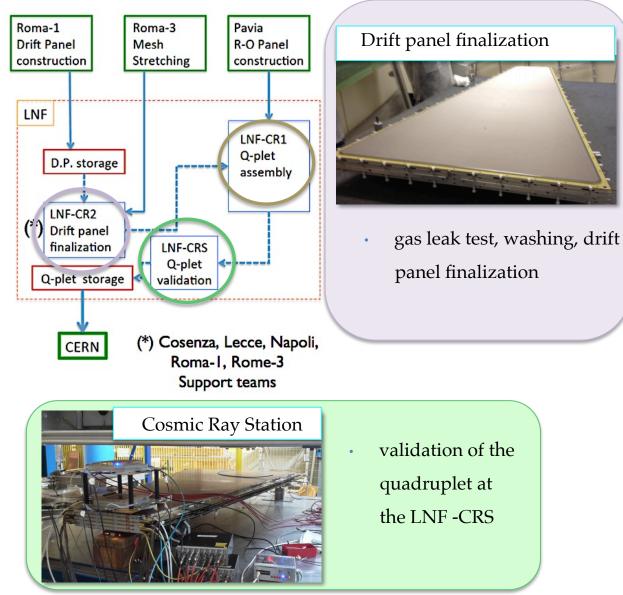
- alignment of the supports to the PCB, Stiffback and granite tables **Rasnick technique:**
 - coded masks read by
 contact-CCD on the
 external side of pcbs
 -> alignment and rotation
 of the strips


• layer alignment:


dedicated technique (Jig) starting from the position read on the coded mask

Requirements: 30 μm of RMS in $\eta,~80~\mu m$ of RMS in the transverse direction (z)

SM1 production scheme


- panel gluing with the vacuum bag technique (P/Pext ~ 0.1)
- mask used to guarantee uniform pressure on the whole panel

clamp are closed and
slowly rolled away from
each other till the optimal
tension on the mesh is
reached: ~10 N/cm

Drift panel construction

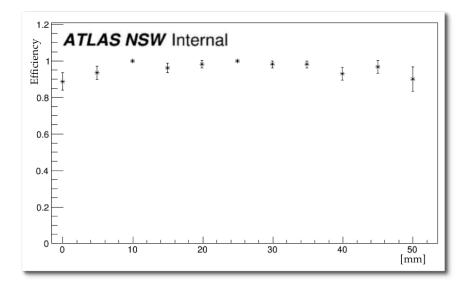
- vertical assembly
- alignment using pins
 - $< 60 \ \mu m$

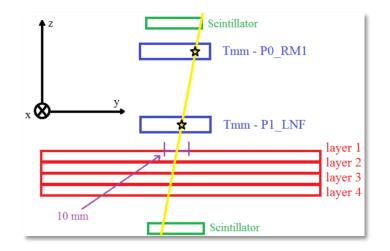
The INFN group is responsible for the construction of the SM1 quadruplets.

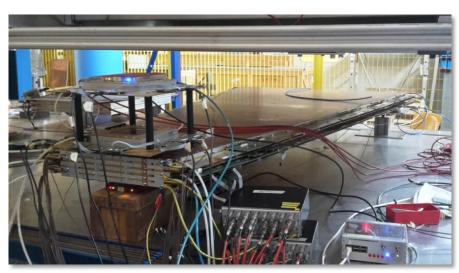
Mechanical precision measurements represent a challenge in the construction of the MM:

- strip alignment on each layer of 30 μ m RMS in η
- planarity within 80 μ m RMS

	Ritmo di produzione	Frazione del totale
Drift panels (RM1)	1 panel/week	40/96
Stretched mesh (RM3)	4 mesh/week	35/128
Finalized drift panels (LNF CR2)	3-4 panels/week	24/96
RO Panels – Eta (PV)	1 panel/2 weeks	3/32
RO Panels – Stereo (PV)	1 panel/2 weeks	4/32
Quadruplets (LNF CR1) and validation (CRS LNF)	1 quadruplet/2 weeks	2/32

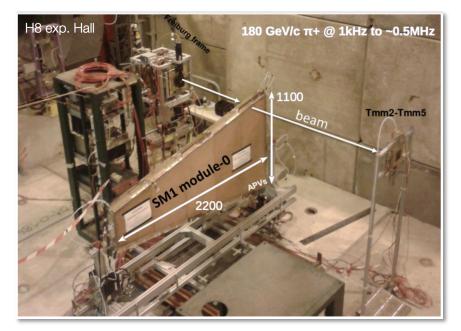


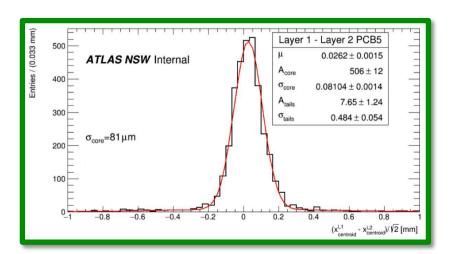

Mod0.5 at the LNF - CRS



Mod 0.5 tested at the LNF - CRS:

- cosmic muons
- 2 scintillators for the trigger
- 2 Tmm (prototype MM of smaller dimension 10x10 cm²) used for external tracking
- efficiency > 98%


Giada Mancini (LNF INFN)


Mod0 at CERN

Mod 0 tested at CERN:

- H4 beam line of the SPS: π⁺ beam of 180 GeV/c with a frequency between 1-500 kHz and beam dimension of 1x1 cm²
- 5 Tmm used as reference
- performance are within expectations:
 σ< 100 μm precision coordinate (η)

Conclusions

- MM chambers will be used after LS2 for the precision tracking in the NSW of the ATLAS experiment
- technology chosen to be used in demanding environments as the high pseudorapidity regions in the LHC experiments
- the SM1 INFN group has been the first one to construct two full scale prototypes
- performances of the prototypes are within expectations
- test and assembly procedure validated
- currently 2 SM1 chambers assembled -> to be tested for validation

Giada Mancini (LNF INFN)

Thanks for your attention