

Simone Sottocornola

Young Researchers Workshop 2018

proton - (anti)proton cross sections

TRIGGER @ LHC

- Very rare events • $\sigma_{\text{Higgs}} < 10^{-10} \sigma_{\text{tot}}!$
- Output limit ~ 1KHz
 Storage and analysis capability limited!
- Trigger: online selection of interesting events rejecting the background
 - The events rejected are lost forever!!

proton - (anti)proton cross sections

TRIGGER @ LHC

- Very rare events

 σ_{Higgs} < 10⁻¹⁰σ_{tot} !

 Output limit ~1KHz
 - Storage and analysis capability limited!
- Trigger: online selection of interesting events rejecting the background
 - The events rejected are lost forever!!

proton - (anti)proton cross sections

Tevatron

10[°]

10⁸

 10^{7}

10⁶

LHC

TRIGGER @ LHC

- Very rare events
 - $\sigma_{\text{Higgs}} < 10^{-10} \sigma_{\text{tot}}!$
- Output limit ~ 1KHz
 - Storage and analysis capability limited!
- Trigger: online selection of interesting events rejecting the background
 - The events rejected are lost forever!!

10[°]

10⁸

10

10⁶

TRIGGER @ LHC

- Rate reduction ~ 40000
 - Multilevel architecture
- Level 1:
 - Hardware-based
 - Low resolution data from calorimeters and muon spectrometer (no Inner Detector)
 - Rate reduction ~ 400 in 2.5 μs
- HLT:
 - Software-based
 - Full resolution data from all the detectors
 - Rate reduction ~ 100 in 200ms avg

100 kHz

10/05/18

TRIGGER @ LHC

- Rate reduction ~ 40000
 - Multilevel architecture
- Level 1:
 - Hardware-based
 - Low resolution data from calorimeters and muon spectrometer (no Inner Detector)
 - Rate reduction ~ 400 in $2.5\mu s$
- HLT:
 - Software-based
 - Full resolution data from all the detectors
 - Rate reduction ~ 100 in 200ms avg

LHC UPGRADE

- Luminosity increased to collect more statistics -> improve discovery potential
- Problems:
 - Increase in the number of superimposed events (pile-up)
 - Output rate to be kept $\sim 1(10)$ kHz
 - Trigger working condition critical!!
- Track-based trigger selection fundamental!!
 - Less pile-up dependent

Run Anni		L (cm ⁻² s ⁻¹)	Pile-up		
	1	2010-12	~7x10 ³³	~20	
	2	2015-18	~10 ³⁴	~25	
	3	2021-23	~3x10 ³⁴	~80	
	4	2026	~ 5-7 x10 ³⁴	~ 140-200	
201	0 Event taken (filled) bunch	μ = 1 2011 at random h crossings	Prefit: taken at randor filled bunch crossing	$\mu = 2$	
			y = 25		

THE TRACKING CHALLENGE

- Track reconstruction performed "connecting the dots"
- Combinatorial problem
 - CPU Processing time does not scale (linearly) w/ luminosity
 - Already now, full tracking only executed for a small subset of the events
- Possible solutions:
 - Increase the cuts at the upper level (L1) to reduce HLT input
 - LOOSE GOOD EVENTS!!
 - GPU usage (brute-force approach)
 - Fast TracKer (hardware-based approach)

Reconstruction Time [s/event]

THE TRACKING CHALLENGE

- Track reconstruction performed "connecting the dots"
- Combinatorial problem
 - CPU Processing time does not scale (linearly) w/ luminosity
 - Already now, full tracking only executed for a small subset of the events
- Possible solutions:
 - Increase the cuts at the upper level (L1) to reduce HLT input
 - LOOSE GOOD EVENTS!!
 - GPU usage (brute-force approach)
 - Fast TracKer (hardware-based approach)

THE ATLAS FAST TRACKER

Fast TracKer:

- Highly parallel processing system
- Hardware-based, able to perform global tracking in the whole Inner Detector

Based on:

- Custom Associative Memory (AM) chips for pattern matching
- FPGAs: track fitting, data preparation, ambiguity resolution ...
- Very complex system:
 - > 450 boards, 8k AM chips, 2k FPGAs, highly parallel!

THE ATLAS FAST TRACKER

- HLT: tracking information currently used in small Region of Interest for a subset of events
- FTK reconstructs all tracks (p_T > 1 GeV) for all L1 accepted events
- Tracks provided at HLT in $\sim 100 \ \mu s$ at the Ll rate (100 kHz)

• Why so important??

- Random Access Memory
 - Data searchable by address: from the address to the data
- Content Adressable Memory
 - Data searchable by content in a single clock cycle: from the data to the address!
- Highest possible level of parallelism
 - instantaneous pattern recognition

Detector geometry: concentric layers

- Channels grouped and merged in bins: granularity reduction
- In each event: different collections of bin hits
- Comparison performed between the set of bin hits and the precomputed patterns
 - Candidate tracks selected (road)
- Hits found in the road Fitted by FPGA
 - Final tracks sent to the HLT

Detector geometry: concentric layers

- Channels grouped and merged in bins: granularity reduction
- In each event: different collections of bin hits
- Comparison performed between the set of bin hits and the precomputed patterns
 - Candidate tracks selected (road)
- Hits found in the road Fitted by FPGA
 - Final tracks sent to the HLT

- Detector geometry: concentric layers
 - Channels grouped and merged in bins: granularity reduction
- In each event: different collections of
- Comparison performed between the set of bin hits and the precomputed
 - Candidate tracks selected (road)
- Hits found in the road Fitted by FPGA
 - Final tracks sent to the HLT

- Detector geometry: concentric layers
 - Channels grouped and merged in bins: granularity reduction
- In each event: different collections of bin hits
- Comparison performed between the set of bin hits and the precomputed patterns
 - Candidate tracks selected (road)
- Hits found in the road Fitted by FPGA
 - Final tracks sent to the HLT

- Detector geometry: concentric layers
 - Channels grouped and merged in bins: granularity reduction
- In each event: different collections of bin hits
- Comparison performed between the set of bin hits and the precomputed patterns
 - Candidate tracks selected (road)
- Hits found in the road Fitted by FPGA
 - Final tracks sent to the HLT

- Detector geometry: concentric layers
 - Channels grouped and merged in bins: granularity reduction
- In each event: different collections of bin hits
- Comparison performed between the set of bin hits and the precomputed patterns
 - Candidate tracks selected (road)
- Hits found in the road Fitted by FPGA
 - Final tracks sent to the HLT

10/05/18

- Detector geometry: concentric layers
 - Channels grouped and merged in bins: granularity reduction
- In each event: different collections of bin hits
- Comparison performed between the set of bin hits and the precomputed patterns
 - Candidate tracks selected (road)
- Hits found in the road fitted by FPGA
 - Final tracks sent to the HLT

COMMISSIONING STATUS

- FTK system currently under commissioning
- System already integrated in ATLAS:
 - SliceA: 1 complete FTK slice, providing 12-layer traks
 - Slice2: 1 slice up to AMB, providing 8 layers traks
- Half of the system expected to be integrated by the end of the year
 FTK not used for trigger selection before Run3

TAU PERFORMANCE

- Current tau identification:
 - Calo preselection
 - MultiVariate Analysis after tracking inside the RoI
- Most of the HLT time spent for tracking
- With FTK:
 - All tracks fed to HLT
 - No need of Calo preselection (pile-up affected)
 - Possible use of more sophisticated algorithms not usable before
- Tau selection efficiency as in offline reconstruction!

- b trigger identification based on MultiVariate Analysis
 - Relies on tracking information
- Without FTK:
 - Not possible to reconstruct all the b-candidates identificated at L1
 - Increase of the L1 threshold required
 - Selection efficiency dramatically reduced in future Runs
- Significative increase in efficiency foreseen with FTK

10/05/18

CONCLUSIONS

- LHC Run II & III will have a lot of challenging physics to be explored
- Only the wider use of tracking information in the trigger will allow to achieve the research goals prefixed
 - Without loose profit from the increase of statistic provided by the luminosity upgrades
- The Trigger is a challenging environment for tracking
 - High rates, short times, requirements for high efficiency and low fake rates
- FTK uses an highly parallel, hardware-based solution to solve the problems of tracking at high luminosity
 - Very good performance with respect to software-based tracking

10/05/18

LHC

- Run 1 main results:
 - Higgs boson found @ 125 GeV
 - High precision measurements of the SM
 - No new physics observed!
- Run 2 and beyond:
 - Measure the properties of the new boson
 - Search wider, further and deeper for new physics
- Increase in luminosity foreseen

WHY TO USE FTK?

- Measure Higgs Properties ex: are fermionic-couplings SM-like?
 - Final states with b-quarks and τ -leptons important but with very large backgrounds from light quark and gluon jets
 - FTK trigger chains can identify b-quarks by finding displaced vertex
 - FTK trigger chains can identify τ leptons by providing tracks in jet cones
- SUSY sparticles can decay to medium energy b and τ which are difficult to trigger without FTK

HIGGS FERMIONIC COUPLING

Higgs Boson couplings

- SM gives accurate coupling predictions
 - $\propto m_f$ for Fermions
 - $\propto m_B^2$ for Bosons
- Powerful indication on the nature of Higgs boson: SM, or subtly different?
- $H \rightarrow \tau \tau \ H \rightarrow b \overline{b}$
 - Only two channels available to study the Yukawa coupling @ LHC
 - Online identification of both tau and b very challenging
 - Based on tracking information!

Configuration:

- AM pattern loading
 - From MonteCarlo

- Collisions data sent in parallel to all the lines
- Match: pattern found in the ones loaded
- Found pattern address sent in output
- Pattern bank dimensions scalable!
 - Adding more AM

- Configuration:
 - AM pattern loading
 - From MonteCarlo
- At work:
 - Collisions data sent in parallel to all the lines
 - Match: pattern found in the ones loaded
 - Found pattern address sent in output
- Pattern bank dimensions scalable!
 - Adding more AM

Configuration:

- AM pattern loading
 - From MonteCarlo

- Collisions data sent in parallel to all the lines
- Match: pattern found in the ones loaded
- Found pattern address sent in output
- Pattern bank dimensions scalable!
 - Adding more AM

Configuration:

- AM pattern loading
 - From MonteCarlo

- Collisions data sent in parallel to all the lines
- Match: pattern found in the ones loaded
- Found pattern address sent in output
- Pattern bank dimensions scalable!
 - Adding more AM

Configuration:

- AM pattern loading
 - From MonteCarlo

- Collisions data sent in parallel to all the lines
- Match: pattern found in the ones loaded
- Found pattern address sent in output
- Pattern bank dimensions scalable!
 - Adding more AM

						JTAG signa	als
Version	Design approach	Technology	Area	Patterns	Package		
1	Full custom	700 nm		128	QFP	confJTAG]
2	FPGA	350 nm		128	QFP	Interface	J
3	Std cells	180 nm	100 mm^2	5 k	QFP	data δ	& conf
4	Std cells + Full custom	65 nm	14 mm ²	8 k	QFP	$] \qquad bus \ 0-7 \longrightarrow DES \ Units \ AM$	data
mini-5	Std cells + Full custom	65 nm	4 mm^2	0,5 k	QFP	con Banks	
5	Std cells + Full custom + IP blocks	03 1111	12 mm^2	3 k	BGA	pattin 0-1 data	
6	Std cells + Full custom + IP blocks	65 nm	168 mm ²	128 k	BGA	DES Units	

L1-CALO AND HLT CALO-PRESELECTION

• L1 CALO:

- Hardware based
 - Energy deposits in EM and HAD calo
 - Granularity $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$
- Selection of RoI as 2x2 tower clusters
 - Energy of 2x1 EM and 2x2 HAD > threshold
 - Energy of insulation EM and HAD rings < threshold
- HLT:
 - Calo-only preselection:
 - Reconstruction from Calo informations (full granularity)
 - Energy calculated in a cone of $\Delta R < 0.2$

HLT: TRACK PRESELECTION

- Z position not know
 - Not possible to track the full RoI
- Two stage fast tracking algorithm:
- 1) Leading track sought ($p_T > 1 GeV$)
 - RoI: narrow cone ($\Delta R < 0.1$) along the beamline (|z| < 225 mm)
 - If no tracks: τ rejected
- 2) All other tracks reconstructed
 - RoI: larger cone ($\Delta R < 0.4$) shorter in the beamline (|z| < 10 mm)

Young Researchers Workshop - Sottocornola Simone

HLT: TRACK PRESELECTION

- Used the track multiplicity to perform the selection
- Tracks multiplicity computed
 - N_{core}^{trk} for $\Delta R < 0.2$
 - N_{isol}^{trk} for $0.2 < \Delta R < 0.4$
- Candidate finally accepted if $0 < N_{core}^{trk} < 4$ and $N_{isol}^{trk} < 2$

HLT: OFFLINE-LIKE SELECTION

Efficiency

- High precision tracking performed on pre-selected tracks
- Final tracking and calo information used to compute identification variables

Variable	Description				
$f_{\rm cent}$	Central energy fraction				
$f_{\text{leadtrack}}^{-1}$	Leading track momentum fraction				
$R_{\rm track}$	Track radius				
S _{leadtrack}	Leading track impact parameter significance				
$f_{\rm iso}^{\rm track}$	Fraction of $p_{\rm T}$ from tracks in the isolation region				
$\Delta R_{\rm Max}$	Maximum ΔR				
$S_{{ m T}}^{{ m flight}}$	Transverse flight path significance				
$m_{\rm track}$	Track mass				
$f_{\rm FM}^{\rm track-HAD}$	Fraction of EM energy from charged pions				
$f_{\text{track}}^{\text{EM}}$	Ratio of EM energy to track momentum				
$m_{\rm EM+track}$	Track-plus-EM-system mass				
$p_{\mathrm{T}}^{\mathrm{EM+track}}/p_{\mathrm{T}}$	Ratio of track-plus-EM-system to $p_{\rm T}$				

TAU-JET OFFLINE DISCRIMINATION

- Topology features used to discriminate between jets and taus
- Challenge: quantify these features in a way that is suited to the analysis technique
- Example: cut based analysis
 - $|\eta_{j_1} \eta_{j_2}| > 6.0$
 - $\phi_{\tau} < \phi_{E_T^{miss}} < \phi_l$
 - $\eta_{j1} < \eta_l < \eta_{j2}$ or $\eta_{j1} > \eta_l > \eta_{j2}$ etc...
- Problem: few signal events look good after full reconstruction
 - Detector effects, efficiencies, pure random fluctuations ...

- Compromise required to accept more signal still rejecting the backgrounds
 - Difficult to be done in cut based analysis
- Definition of new discriminating variables
 - Useful to help for discrimination
- Example:
 - Core energy fraction $f_{core} = \frac{\sum_{i \in dll}^{\Delta R} < 0.1}{\sum_{j \in dll}^{\Delta R} < 0.2} E_{T,j}$

• Ring isolation
$$f_{iso} = \frac{\sum_{i \in had}^{0.1 \leq \Delta K_i \leq 0.2} E_{T,i}}{\sum_{j \in had}^{\Delta R_i \leq 0.2} E_{T,j}}$$

• • • • •

- b trigger selection based on BDT
 - Relies on tracking information
- Without FTK:
 - Not possible to reconstruct all the tracks selected at L1
 - Increase of the L1 threshold required
 - Selection efficiency dramatically reduced in future Runs
- No loose of efficiency foreseen with FTK

- b trigger selection based on BDT
 - Relies on tracking information
- Without FTK:
 - Not possible to reconstruct all the tracks selected at L1
 - Increase of the L1 threshold required
 - Selection efficiency dramatically reduced in future Runs
- No loose of efficiency foreseen with FTK

- b trigger selection based on BDT
 - Relies on tracking information
- Without FTK:
 - Not possible to reconstruct all the tracks selected at L1
 - Increase of the L1 threshold required
 - Selection efficiency dramatically reduced in future Runs
- No loose of efficiency foreseen with FTK

