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Heavy-flavour hadroproduction at the LHC
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* huge cross-sections for charm and

bottom hadroproduction:

at V'S = 13 TeV,

o(pp — cc + X) ~ O(10mb),
o(pp — bb+ X) ~ O(600ub),
o(pp — tt + X) ~ O(700 pb).

x Charm, bottom and top
hadroproduction are studied by
LHCb, ALICE, ATLAS, CMS,
in different kinematical regions.

* The LHCb experiment allows to

probe large rapidities (2 < y < 4.5),

whereas ATLAS, CMS, ALICE are

focused on central region (|y| < 2.5).
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Heavy-flavour vs. light-flavour hadroproduction

my, ~ 2 MeV, myg ~5MeV, ms~ 100 MeV
me ~ 1.4 GeV, mp ~ 4.8 GeV, m; ~ 173.3 GeV

* My, Mg, Ms << /\QCD
= Oés(mu), ag(md), ag(ms) > 1
= pQCD treatment of light-quark hadroproduction is possible
only at large pr ,, complemented by soft QCD models at low p7

* Me, Mp, My >> /\QCD

= as(mc), ag(mb), ag(mt) << 1

= pQCD treatment of heavy-quark hadroproduction is justified
even at small pr ;.

= The methods for describing the latter process at colliders
can be applied also in astroparticle physics problems.
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p-p and p-p collision overview (LHC and Tevatron)

hard scattering

parton shower

QED shower

hadronization

o hadron decay

underlying event

pile-up (overlap of
different collisions).

PERTURBATIVE AND NON-PERTURBATIVE COMPONENTS
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QCD collinear factorization
for heavy-quark pair hadroproduction

do(NyNy — hh+X) =Y, PDFM(xa, j1F) PDF)? (x5, 1) ®
® db i xt(Xas Xbs UF, 1Ry s (1LR))

where
* x=pT /Py, = longitudinal momentum fractions

* PDFM (x5, iF), PDFéVQ(Xb.,u,:) = parton distribution functions (long-distance physics),
they absorb infrared collinear singularities uncancelled within the hard-scattering and are
universal (process independent).

% db,;, 5 = partonic hard-scattering cross-section (short-distance physics),
computable by perturbative QCD.

* pp = factorization scale: separates long-distance physics (non-perturbative QCD)
from short-distance physics (perturbative QCD).

* pur = renormalization scale: renormalization eliminates UV divergences,
by reabsorbing the divergences in renormalized quantitiesss.
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o(pp — cg(+X)) at LO, NLO, NNLO QCD
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exp data from fixed target exp + colliders (STAR, PHENIX, ALICE, ATLAS, LHCb).

(Eiab = 10° GeV ~ Ecp = 1.37 TeV)
(Eiap = 108 GeV ~ Ecp = 13.7 TeV)
(Eiab = 10" GeV ~ Ecp = 137 TeV)

* Assumption: collinear factorization valid on the whole energy range.
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From heavy quarks to heavy-flavour hadrons
Different descriptions of the transition are possible:

1) fixed-order QCD + Parton Shower + hadronization:

match the fixed-order calculation with a parton-shower algorithm (resum-
mation of part of the logarithms related to partonic collinear emissions
on top of the hard-scattering process), followed by hadronization (phe-
nomenological model).

Advantage: fully-differential event generation, correlations between final
state particles/hadrons are kept.

Problem: accuracy not exactly defined, it is not an rigorous resummation
procedure to all orders in perturbation theory.

2) Convolution of partonic cross-sections with Fragmentation Functions
(see the following).

Both methods 1) and 2) used here.

N.B. Top quarks decay before hadronizing, no top hadrons detected.
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QCD factorization

for 1-particle inclusive heavy-hadron hadroproduction (valid only in VFNS!)

d(T(NlN2 — H+ X) = Zabc PDFaNl(Xa,uF_’,')PDFéVZ(Xb,/J,F‘,') &

® dBabsext(Xas Xbs 2, JUF is HF £ R, s(BR)) @ FFH(z, pr f)

do: differential perturbative partonic cross-section,
its m, dependence, neglected in the ZM-VFNS, is instead kept in the GM-VFNS.

1F, g reabsorb IR and UV divergences (truncation of P.T. series).

PDFs: perturbative evolution with factorization scale yif ;,
non-perturbative dependence on xzp*’/PR,’.

FFs: perturbative evolution with factorization scale yif r,
non perturbative parameterization in terms of z = Pﬁ/pc+ frequently used.

QCD uncertainties
* luF i, LF,r and pgr choice: no univocal recipe.

* Approximate knowledge of heavy-quark masses m; (SM input parameters).
* Choice of Variable Flavour Number Scheme (several possibilities!)
* PDF (+ as(Mz)) fits to experimental data

* FF fits to experimental data
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Parton distribution functions (PDFs)

x PDFs encode the partonic content of the hadrons, in terms of quarks
and gluons: probability of finding a parton with specific features in a
hadron.

x In collinear factorization, PDFs for the distribution of parton / in hadron
A are function of two variables:

PDFj/a (x, @)

withi=g, u, d,s, c, b, t 0 d, 5, ¢ b, T,
x = fraction of the hadron momentum carried by parton when
the hadron is probed in a process with momentum transfer Q2.

* Evolution of PDFs with Q2 is determined by DGLAP evolution equa-
tions (pQCD).

x Dependence of PDFs on x, instead, has to be determined making fits
to experimental data.

« PDFs encapsulate long-distance physics aspects (non-perturbative).
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gluon PDF: comparison between different PDF fits
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* The higher are Ecy and the most forward is the scattering (y4 large),

the lower are the x values probed.
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x dependence of PDFs
and x coverage of HERA and LHCb experiments
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from O. Zenaiev et al. (PROSA collaboration), [arXiv:1503.04581]
x LHCb (p-p) acts as a complementary experiment with respect to HERA (e-p)
in order to constrain PDFs.
* Additional constraints come from other LHC experiments.
* At present PDF behaviour in the “extreme” regions (low-x and high-x)
is more uncertain than in the intermediate-x range.
* The higher is the energy of a hadronic collision, the higher is the
probability that partons in the “extreme” regions participate in it.
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PROSA PDF fits:

comparison between the three variants of the fit

Basic idea: use the data on D-meson and B-meson hadroproduction at LHCb to constrain
PDFs (especially gluon PDFs) at low x's.
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& [T s dogev® 1§ T efsogeV? T
2 g0k HERA A HERA
2 F S\ HERA + LHCb (Abs.) ] 2 SN\ HERA + LHCb (Abs.) 3
50F ##% HERA + LHCb (Norm.) 3 7F %% HERA + LHCb (Norm.) E
ER :
E 5 E
4 3
g 3 =
E 2 3
=10F- _: 1

- B

10 10° 10* 10 102 107 10 10° 10* 10% 102 107 !

* The gluon and the sea quark distributions are correlated:
a reduction on the uncertainty of the former propagates to the latter.
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Theory predictions vs. LHCb experimental data
pp — DT + X at /S =7 TeV
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* Here we compare theoretical absolute cross-sections to experimental data,
whereas the PROSA PDF fit variant using LHCb data ratios is employed in the predictions.

* Big uncertainties on the theoretical predictions, dominated by /g and s scale variations.

x LHCb coverage: 2 < |y| < 4.5, but astrophysical data cover larger |y| as well.....
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Theory predictions vs. LHCb experimental data on
pp — D* 4+ X at V'S = 13 TeV
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These data are not included in the PROSA PDF fit:
experimental data always within the theory uncertainty bands.

M.V. Garzell January 10th, 2018 14 / 44



How do other PDF fits (CT14nlo), not including
LHCb data, behave ? pp — D* + X at LHCb at 13 TeV
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x Large PDF uncertainties, increasing at low pt / large y.
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Comparison between
theoretical and experimental uncertainties

* For charm hadroproduction, present theory uncertainties look far larger than the
experimental ones.

+ Why do we not limit our uncertainty bands to the experimental uncertainty bands ?

— Degeneracy: many different modifications in the theory input (charm mass, PDFs,
etc....) can lead to a “good agreement” with data. But which modification is
the “correct” one ?

— QCD theory is not a phenomenological model: predictions coming from first principles
as much as possible. The use of phenomenological models is a consequence of our
imperfect knowledge of the theory.

— (Sometimes not only Theories but even) Data can be wrong !
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Ratios of theory predictions at different energies vs.
LHCb 13/7 experimental dat
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* Reduced uncertainties in theoretical ratios (compared to the absolute case).

+ Agreement of theory predictions and experimental data improved after last data revision
(May 2017).

* Theory predictions from two different independent computations and
PDF sets are considered (red line: NLO QCD + NLL GM-VFNS, with CT14nlo PDFs,
green/blue bands: NLO QCD + PS + hadronization, with PROSA PDFs).
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Why these developments matter ?

Constraining PDFs at low x's is relevant for:

* forward physics and multiple parton interactions, already in the LHC era:

with increasing precision of the LHC data,
improving the description of these aspects matters!

* future high-energy colliders: FCC-hh, etc.....
(see the study in the FCC-hh SM report [arXiv:1607.01831]).

* high-energy astroparticle physics applications:

@ prompt v fluxes
o v + N DIS (detection of high-energy neutrinos by VLV T's)
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Atmospheric neutrino fluxes

x conventional neutrino flux:

NN — 75 KT+ X — v(9,) + pt + X

* prompt neutrino flux:

NN — ¢, b,c,b+ X — heavy-hadron + X — v(7) + X + X

expected to dominate above Ej,,, > 5 -10° GeV

heavy-quarks (c, b, ¢, E) produced through:
1) hard-scattering processes
2) already in the nucleon PDFs.
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Prompt v fluxes: ingredients of the computation

QCD and astrophysical input:

x primary CR flux and composition

« Earth atmospheric profile (density and composition)

x N-Air total inelastic cross-section

« NN hadroproduction cross-sections for charmed mesons/baryons

« cold nuclear matter/QGP effects vs. superposition approximation

Input of a system of coupled differential equations regulating the evolution of
particle fluxes in the atmosphere (interaction/decay/(re)generation):

d¢i(E, X) _  _6i(E,X) _ 6i(Ex X) |
aXx Nint(Ej) — Aj dec(Ej)
+ D SRELX)+ DSk (B, X) + Sig(E, X)
k#j k#j
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Z-moments for heavy-hadron production and decay

x CR + Air interactions producing heavy hadrons (in particular including charm)
parameterized in terms of p-p collisions

* Integration variable: xg = E,/E,

* Z-moments for intermediate hadron production:

' dxe ¢p(En/xE) A dopp—scz—htX
7 E) — HYAE Yp .alr pp—cc—h+ E
Ph( h) /0 XE ¢p(Eh) O_tot,mel(Eh) dXE ( h/XE)

p—Air
* These hadrons are then decayed semileptonically, producing leptons (+ X)
* Integration variable: x; = E;/Ej

* Z-moments for intermediate hadron decay:

Zn(Er) = /dX/EWFha/(X/E)
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do(pp — cc — D° + X)/dx:
scale and mass uncertainties

do /dxg (pb)
3 3 3 3 3%
:

% S
T

from [arXiv:1507.01570]

* Here plots for pp collisions at £, 1., = 107 GeV, shape remains similar at
different energies.
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Relation between xz and rapidity y
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* case of A. considered here,
qualitatively similar behaviour for charmed mesons.

* high xg corresponds to high y (forward particles)

* maximum rapidities y probed at LHCb corresponds to xg < 0.15.
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Prompt neutrino fluxes:
QCD scale, mass and PDF uncertainties

(v + anti-vy) flux
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from [arXiv:1611.03815]
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ur and pr scale uncertainties

(v + anti-vy) flux D* xg distribution,  Ep=3107 GeV
: T . . .
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x Scale uncertainties are evaluated by making an envelope over different
variations.

* Predictions have a shape uncertainty, not only a normalization uncer-
tainty!
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The all-nucleon CR spectra: considered hypotheses

Cosmic Ray primary all-nucleon flux
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* All-nucleon spectra obtained from all-particles ones under different assumptions
as for the CR composition at the highest energies.

* Models with 3 (2 gal + 1 extra-gal) or 4 (2 gal + 2 extra-gal) populations
are available.
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Prompt (v, + 7,) fluxes: comparison between
theory predictions using different primary CR fluxes

(v +anti-vy) flux (vy +anti-vy) flux
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* Each panel corresponds to a different CR primary flux (GST-3, GST-4, H3a, H3p).
* For each panel: pp and pp scale, PROSA PDF and charm mass uncertainties.
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Prompt (v, + 7,) fluxes

with different CR primary fluxes

PROSA (v +anti-v,)

(PRELIMINARY)

flux, using different CR primary fluxes
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* GSF is the newest CR spectrum available by the Gaisser group (ICRC 2017),
leading to results similar to the broken power-law case.
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Comparison of predictions by different groups

vy + anti-v, flux
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Different predictions compatible within uncertainty band.
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(v, + ,) fluxes: comparison with predictions
from hadronic models used in EAS physics
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from A. Fedynitch, EPJ Web of Conferences 116, 11010 (2016)

All recent central predictions, both those on the basis of pQCD and
those on the basis of hadronic models used in EAS physics (like SIBYLL,

DPMJET), turn out to lie within our uncertainty band.
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Prompt neutrino fluxes:
theoretical predictions from [arXiv:1611.03815] vs. IceCube upper limits
(vu + anti-vy,) flux
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IceCube upper limit on prompt fluxes from the 6-year analysis of thoroughgoing 1
tracks from the Northest Hemisphere [arXiv:1607.08006] assumed the ERS flux
as a basis for modelling prompt neutrinos (reweighted to the H3p CR flux).
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Prompt neutrino fluxes:
theoretical predictions from [arXiv:1705.10386] vs. IceCube upper limits

GM-VENS (v, +anti-v) flux
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% lceCube results give clear indication that the CT14nlo gluon PDF
uncertainties at low x's (see PDF error sets 53-56) are too large!
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Expected events in lceCube HESE analysis:
prompt, conventional and total (v + ) components
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x 3-year analysis,

qualitatively similar results in the 6-year analysis (ICRC 2017).
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HESE analysis:

theoretical predictions vs. IceCube experimental data

' total (GM-VFNS + Honda 2015)
total (PROSA + Honda 2015)
IceCube atmo nu upper limit 90% C.L. ——
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+ PROSA 2016 predictions vs GM-VFNS 2017 predictions vs lceCube exp. data
* GM-VFNS 2017 predictions dominated by CT14nlo PDF uncertainties.
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New results from ANTARES on tracks and showers

o
[arXiv:1711.07212]
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* theory predictions for atmospheric flux = Honda + ERS
* interesting to extend to more recent predictions

% interesting to compare ANTARES data with IceCube data

M.V. Garzelli January 10th, 2018 35/ 44



Forward A. hadroproduction

At 2<y<45

mass var + scale var + PDF vé
‘scale var (ug, k) in ([0.5.2], [u 5 2)
PPROSA PDF variation
mass var in (1 25 1.55) GeV'
= HF = sqrt(pr? + mc?)
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& 8 &
T

)
:
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* LHCb experimental data at /s = 7 TeV above the theory bands (differences within 27).

+ Update of branching ratios and fragmentation fractions needed:

big uncertainties on these elements (~ 25% and 8%).
* What happens at 13 and 5 TeV ?

% LHCb is measuring A./D° ratios in p — Pb collisions.

0051152 25 3 35 4 455 556 65 7 75 8

= Extension to pp would be important for assessing fragmentation/hadronization
mechanisms and for testing the intrinsic charm hypothesis.

A rapidity dependence is to be expected/checked.
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Uncertainties in the heavy-quark content of PDFs

* Ansatz: only extrinsic charm/bottom
charm and bottom in the nucleon PDFs are radiatively generated:

o for scales i < mc (e < mp) no charm (bottom) in PDFs
o for scales g > mc (g > mp) charm (bottom) is produced by

QCD evolution through g — ¢t and ¢ — gc splittings
(g — bb and b — gb splittings)

* Further possibility:
additional non-perturbative charm and bottom components:
= Models for intrinsic charm/bottom.

Original motivation: old experimental data at large xr.

But, no need for intrinsic charm/bottom at LHC

(at least for the observables studied so far).

Possible probe of the (non-)existence of intrinsic charm at LHC:
pp — Zc, ¢
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Charm component in modern PDFs (CT14)
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Prompt neutrino fluxes with intrinsic charm
(PRELIMINARY)

vy + anti-vy, flux

scale var + Mgparm var + PDF var
GMS 2015, H3p CR ——
PROSA, U = UF = sqrt(pr? + 4 mc?)
PROSA, W = KF = sqrt(pr? + mc?)
GM-VFN

E3 dN/dE (GeVZcmZ2ssrt)

SIC —
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10 GM-VFNS
Ice?ube prompt‘upper limit (?O% C.L)- (}‘-iSp CR + EF‘(S) —
108 104 108 108 107 108
Ejap,v (GeV)

Other calculations:
- Halzen and Wille (upper limit somehow compatible with our 1C2)
- Laha and Brodsky (smaller upper limit).
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M.V. Garzelli

Intrinsic charm and prompt neutrino fluxes

107 : T .
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E, [GeV]
from [arXiv:1607.08240]
« Extrinsic heavy-quarks generated by g — QQ splittings.

* Intrinsic charm hypothesis testable by LHCb (large x),
especially using the fixed-target SMOG apparatus.

* Further possibility: investigate pp — Zc, vyc.

* Old results from EMC, ISR, fixed-target experiments
(forward A¢, asymmetries D - D, J /¢ J/1).
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Nuclear PDFs and prompt neutrino fluxes
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+ Bhattacharya et al. 2016, produce predictions by using nuclear PDFs,

instead of nucleon PDFs + superposition model

— their prompt fluxes look suppressed with respect to the older ones.

* However, still compatible with our predictions
on the basis of nucleon PDFs + superposition model.

* Uncertainty on nuclear PDF are underestimated: however they can be huge!
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Open bottom production at LHCb, /s

theory vs. experiment
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BT from [arXiv:1710.04921]

* The corrected data on Hj, at 13 TeV exhibit a similar do/dn shape as those at 7 TeV.

* Helpful to have separate results for each H, (BT, B%, B?, A9).

* In case of BT, shape of FONLL predictions more similar to that of data than for Hp.

* We plan cross-checks with further methods (GM-VFNS).

= Important to understand these aspects in order to incorporate bottom
hadroproduction and decay in prompt neutrino fluxes.
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Top quark measurements and constraints on PDFs
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* Including information on o't and on various differential distributions
do/dpt ¢, do/dy:, do/dys, do/dmz in PDF fits constrains gluons
especially in the region 0.08 < x < 0.5.
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Conclusions

* Heavy-quark hadroproduction investigated by all LHC experiments.
LHCb particularly interesting because it explores the “large” rapidities
(2 <y <45).

* Theory predictions on charm and bottom at present have larger
uncertainties than the experimental data.

*x Dominant uncertainties related to missing higher-orders in pQCD.

* Heavy-quark hadroproduction data useful to constrain PDFs
at low and large x's.

*x Prompt neutrino flux theory uncertainties reflect the previous ones.

* lceCube and future Antares/KM3NeT data can be used to constrain
unknown aspects of QCD (e.g. PDFs at low x's and intrinsic charm,
difficult to study at colliders).

* A webpage with our most recent predictions is available: www.desy.de/~1epflux
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