

Gravitational Wave Transient Sources What we learn from them

F. Marion For the LIGO Scientific Collaboration and the Virgo Collaboration

CRIS 2018 – June 20, 2018

Ground-based GW detectors

O1 & O2 Observing Runs

- Binary neutron star range
 - > Average horizon distance
 - Horizon ~ 2.26 x range
- O1: 16 weeks
- O2: 37 weeks
- Virgo joined for last month of O2

Compact Binary Coalescences

- BH + BH, NS + NS, NS + BH systems
- Waveform models from analytical and numerical relativity
- Event dynamics probes strong field gravity
- Standard candles
- Rare events
 - Rates now measured
 - ≻ R_{BBH} = 12 213 Gpc⁻³ yr⁻¹
 - > $R_{BNS} = 320 4740 \text{ Gpc}^{-3} \text{ yr}^{-1} \stackrel{\circ}{>}$

Detections in O1 & O2 runs so far

O2 BBH so far

PRL 118, 221101 (2017) PHYSICAL REVIEW LETTERS 2 JUNE 2017 GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence

at Redshift 0.2

THE ASTROPHYSICAL JOURNAL LETTERS, 851:L35 (11pp), 2017 December 20

© 2017. The American Astronomical Society.

OPEN ACCESS

GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence

https://doi.org/10.3847/2041-8213/aa9f0c

GW170817

- Brightest GW signal so far
 - ≻ SNR = 32
- Closest source so far
 - > Luminosity distance 40^{+8}_{-14} Mpc
- Measured masses consistent with known neutron star masses
- □ Localized (low latency) within 31 deg²
- Multiple EM counterparts
 - Gamma, X-ray, optical, radio
- Confirmation of the link between BNS mergers and short GRBs
- Event associated with galaxy NGC 4993 and kilonova AT2017gfo

Detecting CBC signals

- Get background under control
 - Detector noise not Gaussian/stationary
 - Measure background from data
 - Require multi-detector coincidence
 - Monitor detector behavior/environment and veto transient disturbances
 - Check consistency with signal
- □ Estimate significance from false alarm rate

- Rely on accurate waveform model to perform matched filtering
- Scan space of intrinsic parameters driving system dynamics – masses, spins

Characterizing CBC sources

- □ Intrinsic parameters (8 10)
 - > Masses (2) + Spins (6) \pm Tidal deformability (2)
- **Extrinsic** parameters (9)
 - > Location : luminosity distance, right ascension, declination (3)
 - > Orientation: inclination, polarization (2)
 - > Time and phase of coalescence (2)
 - Eccentricity (2)
- Parameter estimation based on coherent analysis across detector network
 - Bayesian framework: Computes likelihood of data given parameters, based on match between data and predicted waveform
 - Explores full multidimensional parameter space with fine stochastic sampling
- Infrastructure also allows to do model selection
 - > Constrain possible deviations from General Relativity in signal

Signal Diversity

Do we understand the progenitors?

Masses and Spins

Inspiral

- Leading order: driven by chirp mass
- Next to leading order: mass ratio, spin components // orbital angular momentum
- > Higher orders: full spin DOF
- Additional spin effect
 - If not // orbital angular momentum: orbital plane precession
 - Amplitude and phase modulation
- Merger and ringdown
 - Primarily governed by final black hole mass and spin

Masses

□ Heavy stellar mass BHs (> 25 M_☉)

- Weak massivestar winds
- Formation in environment with low metallicity

□ GW170817 remnant

 Lightest BH or heaviest NS known

Spins

- Spins difficult to measure sub-dominant effect on waveforms
- Spins possible discriminator for BBH formation history
 - BHs in dynamically formed binaries in dense stellar environments expected to have spins distributed isotropically
 - For field populations, stellar evolution expected to induce BH spins preferentially aligned with the orbital angular momentum

Neutron Star Tidal Deformability

- Tidal effects in BNS signal
 - Point particle approximation breaks down before end of inspiral
 - Companion tidal field induces massquadrupole moment and accelerates coalescence
 - $\succ\,$ Ratio of induced quadrupole moment to tidal field ∞ tidal deformability $\Lambda\,$
 - Subdominant effect like spins, mass ratio – potentially observable above 600 Hz
 - Allows to constrain NS equation of state and radius
 - From GW
 - NS EoS predicting less compact stars disfavored
 - NS radius ~12 km arXiv:1805.11581
 - Electromagnetic observations provide additional constraints

Localization

- Primarily from time delay between detectors
- Amplitude and phase information help

- Key input for EM follow-up and counterpart search
- Ultimate localization from Bayesian inference – multidetector, coherent model – on data with final calibration

Localization of Sources so far

Do we understand the remnants?

- Not very well yet for lack of sensitivity at high frequency
- Kerr nature of CBC remnant can be shown by observing multiple quasinormal modes in post-merger signal
 Well modelled but low SNR
- Fate of BNS remnant should leave prints in both GW and EM signals
 - But difficult to observe and read the prints

Margalit & Metzger

Search for post-merger GW signal from **GW170817 remnant**

Frequency [Hz]

Kilonova & Nucleosynthesis

- Rapid neutron capture nucleosynthesis in merger ejecta
 - Need very neutron-rich matter to forge heaviest r-process elements 58 ≤ Z ≤ 90
 - > AT2017gfo IR lightcurve and spectra indicate heavy r-process elements
- Accumulated nucleosynthesis could account for all heavy elements in Galaxy
 - Depends on ejecta mass and composition, and on merger rate

Are GWs as predicted by GR ?

Polarization modes

Propagation speed

Binary dynamics

Graviton mass

Lorentz invariance

Equivalence principle

GW Polarizations

- Generic metric theories of gravity allow up to six polarizations
- GR allows two tensor polarizations, + and x
- LIGO instruments have similar orientation
 record same combination of polarizations
- Virgo has different orientation
 breaks degeneracy
- GW geometry probed directly through projection of metric perturbation onto detector network

 GW170814: pure tensor polarization strongly favored over pure scalar or vector polarizations

Testing GR with BBH mergers

- Most relativistic binary pulsar known today
 > J0737-3039, orbital velocity = v/c ~ 2 × 10⁻³
- BBH mergers
 - Strong field, non linear, high velocity regime
 v/c ~ 0.5
- No evidence for deviation from GR in waveform, place empirical bounds on high order post-Newtonian coefficients

Testing some GR cornerstones (I)

- GW propagation speed
 - GW170817 GRB 170817A: delay of 1.74 ± 0.05 s over > 85 million years propagation
 - > Assume Gamma emission delayed by [0,10]s

$$-3 \times 10^{-15} \leq \frac{v_{GW} - v_{EM}}{v_{EM}} \leq 7 \times 10^{-16}$$

Equivalence principle

- EM radiation and GWs affected by background gravitational potentials in the same way ?
- the same way ? Shapiro delay $\delta t_{\rm S} = -\frac{1+\gamma}{c^3} \int_{\mathbf{r}_{\rm e}}^{\mathbf{r}_{\rm o}} \dot{U}(\mathbf{r}(l)) dl$

$$-2.6 \times 10^{-7} \le \gamma_{\rm GW} - \gamma_{\rm EM} \le 1.2 \times 10^{-6}$$

Many alternative theories of gravity ruled out

Testing some GR cornerstones (II)

Lorentz invariance: Look for possible dispersion in signal propagation

$$\left(\frac{v}{c}\right)^2 = 1 - \left(\frac{hc}{\lambda_g E}\right)^2$$

GW150914 + GW151226 + GW170104

PRL 118, 221101 (2017)

 $\lambda_g > 1.6 \times 10^{13} \, km$

- > Bound graviton mass $m_g \leq 7.7 \times 10^{-23} \, eV/c^2$
- More constraining than bounds from Solar System and binary pulsar observations
- Less constraining than model dependent bounds from large scale dynamics of galactic clusters and weak gravitational lensing observations

Source Distance

CBC sources are standard sirens

- Masses encoded in waveform
- Once masses are known, amplitude gives distance
- $D_{
 m L}/{
 m Mpc}$ > But some degeneracy with binary inclination and source location

Measuring the Hubble Constant

GW17081 – AT2017gfo

- ➤ GW only
 - Luminosity distance = 40^{+8}_{-14} Mpc at 90% CL
- Assuming sky position of AT2017gfo
 - $d = 43.8^{+2.9}_{-6.9} \,\mathrm{Mpc}$ at 68% CL
- H₀ uncertainty from statistics, geometrical degeneracy with system inclination, and galaxy peculiar velocity

Independent of any cosmic distance ladder

Prospects for Near Future

- O2: 1/2 1/4 of the design sensitivity of Advanced LIGO and Advanced Virgo
- Currently both LIGO and Virgo improving sensitivity of instruments
- □ Next: ~1 year long O3 run
 - Start early 2019
 - LIGO BNS range ~ 120 Mpc, Virgo ~ 65 Mpc
- □ Best guesses for O3
 - > BBH: Several per month to several per week
 - > BNS: 1 to 10 in the year-long run
 - > NSBH: N=0 not ruled out in any scenario, most give ~50% N>0
- More events, more physics... more breakthroughs?
 - Eagerly waiting for next galactic supernova

Conclusion

A growing family of GW transient sources

- > 6 BBH mergers, including first triple detection with Advanced Virgo
- > 1 BNS merger, with multi-wavelength follow-up
- □ Multi-messenger GW astronomy now a reality
- GW observations are delivering the expected returns for fundamental physics, astrophysics, cosmology
- Full O2 analyses on-going
- □ More to come in O3...