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Ground-based GW detectors

. , Unlikely detection
O 1st generatlon interferometric detectors

» Initial LIGO, Virgo, GEO600

Y

> Enhanced LIGO, Virgo+ Improved sensitivity

\

0 2nd generation detectors ( @

> Advanced LIGO, Advanced Virgo, : _
GEO-HF, KAGRA Toward routine GW observation

A+ Multi-messenger astronomy
AdV+

Voyager
Thorough observation of O 3rd generation detectors

Universe with GW > Einstein Telescope, Cosmic Explorer

Science data taking
First rate upper limits
Set up network observation

Laid ground for multi-messenger astronomy
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First detections



O1 & 02 Observing Runs

LIGO binary neutron star inspiral range
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Compact Binary Coalescences

BH + BH, NS + NS, NS + BH
systems

Waveform models from
analytical and numerical
relativity

Event dynamics probes
strong field gravity

Standard candles
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f)()gd;

|

[T — Numerical relativity

Reconstructed (template)

Rare events i = . .

— I I I I
» Rates now measured S 06 -
_ - 1 3\ | = Black hole separation —
> RBBH =12-213 GpC yr '8 gz === Black hole relative velocity i
1 3 B _

> Rgns =320-4740Gpc3yrt © 0.3k . | | |
0.30 0.35 0.40 0.45

Time (s)

o N W

Separation (Rs)



Detections in O1 & 02 runs so far
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02 BBH so far

week ending

PRL 118, 221101 (2017) PHYSICAL REVIEW LETTERS 2 JUNE 2017

54
GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence
at Redshift 0.2

THE ASTROPHYSICAL JOURNAL LETTERS, 851:L35 (11pp), 2017 December 20 hutps: / /doi.org/10.3847 2041-8213 /aa91lc
£ 2017. The Amecrican Astronomical Socicty.

OPEN ACCESS

Crozshark

GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence

week ending

PRL 119, 141101 (2017) PHYSICAL REVIEW LETTERS 6 OCTOBER 2017

54
GW170814: A Three-Detector Observation of Gravitational Waves
from a Binary Black Hole Coalescence ©
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GW170817

Brightest GW signal so far

» SNR =32

Closest source so far

> Luminosity distance 407}, Mpc

Measured masses consistent with
known neutron star masses

Localized (low latency) within 31 deg?
Multiple EM counterparts
» Gamma, X-ray, optical, radio

Confirmation of the link between BNS
mergers and short GRBs

Event associated with galaxy NGC
4993 and kilonova AT2017gfo

PRL 119, 161101 (2017)



Detecting CBC signals
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Detector noise not Gaussian/stationary
Measure background from data
Require multi-detector coincidence

Monitor detector behavior/environment

and veto transient disturbances
Check consistency with signal

O Rely on accurate waveform
model to perform matched
filtering

O Scan space of intrinsic
parameters driving system
dynamics — masses, spins

Living Rev Relativ (2018) 21:3
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0 Estimate significance from false alarm rate




Characterizing CBC sources

Q Intrinsic parameters (8 — 10)
» Masses (2) + Spins (6) £ Tidal deformability (2)

0 Extrinsic parameters (9)
» Location : luminosity distance, right ascension, declination (3)
» Orientation: inclination, polarization (2)
» Time and phase of coalescence (2)
» Eccentricity (2)

0 Parameter estimation based on coherent analysis across
detector network

» Bayesian framework: Computes likelihood of data given parameters,
based on match between data and predicted waveform

» Explores full multidimensional parameter space with fine stochastic
sampling
0 Infrastructure also allows to do model selection
» Constrain possible deviations from General Relativity in signal



Signal Diversity
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Do we understand the progenitors?

50UFC<DOPU|ati0” Binary formation and evolution
Masses Spins Merger rates
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lidal
I a GW151226

deformability \ | Bk
GW170814 _—— — NV
GW170817
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me erva

Neutron stars Black holes
What is their structure? Are they the BH of GR?




Masses and Spins
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Q Inspiral 2 i S
» Leading order: driven by chirp E GW170817 &
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» Next to leading order: mass 2
ratio, spin components // ' : %
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Masses

Masses in the Stellar Graveyard -
in Solar Masses

80

| ” (> 25 Mg)

O » Weak massive-
o ¢ . star winds
| | > Formation in
o _ ¢ environment
4 with low
metallicity

10

TR O IR > Lightest BH or
© St fhemd ) T it gt e e heaviest NS
S known

LIGO-Virgo | Frank Elavsky | Northwestern
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Spins

0 Spins difficult to measure — sub-dominant
effect on waveforms

0 Spins possible discriminator for BBH
formation history
» BHs in dynamically formed binaries in dense

stellar environments expected to have spins
distributed isotropically

> For field populations, stellar evolution expected
to induce BH spins preferentially aligned with
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0 Tidal effects in BNS signal

>

>

Point particle approximation breaks
down before end of inspiral

Companion tidal field induces mass-
guadrupole moment and accelerates
coalescence

Ratio of induced quadrupole moment
to tidal field oc tidal deformability A

Subdominant effect — like spins, mass
ratio — potentially observable above
600 Hz

Allows to constrain NS equation of
state and radius

From GW

= NS EoS predicting less compact stars
disfavored

= NSradius~12 km  arXiv:1805.11581

Electromagnetic observations provide
additional constraints

Neutron Star Tidal Deformability

arXiv:1805.11579
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Localization

between detectors

Q Primarily from time delay
0 Amplitude and phase

HV

information help

a Key input for EM follow-up

and counterpart search

0 Ultimate localization from
Bayesian inference — multi-
detector, coherent model —
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Localization of Sources so far

- . GW170104
- BN\ LVT151012

GW170608
o GW151226

S \ GW170817
il F 16 deg?
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GW1 7UB§ :  LIGONTrgoNASALeo Singer

17



Do we understand the remnants?

0 Not very well — yet — for lack of sensitivity at high
frequency

Q Kerr nature of CBC remnant can be shown by observing
multiple quasinormal modes in post-merger signal

> Well modelled but low SNR
(D)

a Fate of BNS remnant ey Ys1,

ShOUId |eave prints in Prompt Collapse HMNSo‘rs'}:oDI:tJn‘redSMNS IonglwedSMNS

both GW and EM signals \ — //

> But difficult to observe /9 U \
and read the prints

Margalit & Metzger
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Search for post-merger GW signal from
GW170817 remnant

O <~ 1ssignal
from
hypermassive
NS

O <~500s
signal from
supramassive
NS

0 Upper limits

still an order
of magnitude
larger than

most models

V5, and hgs [1/vHz

Astrophys. J. Lett. 851, L16 (2017)
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Kilonova & Nucleosynthesis

Valley of stability of nuclei

M = Naimbre

0 Rapid neutron capture
nucleosynthesis in merger ejecta L A s
»> Need very neutron-rich matter to = Fig

_."n__l
1

forge heaviest r-process elements Elm

58<7<90 3 .
> AT2017gfo IR lightcurve and spectra 2

indicate heavy r-process elements € 1 = 4%

=
0 Accumulated nucleosynthesis “ B
could account for all heavy 50- g
elements in Galaxy g B |Stable
e . |} disintegration

» Depends on ejecta mass and N -'

composition, and on merger rate 2= Nombrede

"= 50~ 10 83
Number of protons



Are GWs as predicted by GR ?

Polarization modes
Propagation speed

Graviton
mass

Binary dynamics

time observable (seconds)

Lorentz invariance
Equivalence principle



GW Polarizations

Generic metric theories of
gravity allow up to six
polarizations

GR allows two tensor
polarizations, + and x

LIGO instruments have similar
orientation = record same
combination of polarizations

Virgo has different orientation
=» breaks degeneracy

GW geometry probed directly
through projection of metric
perturbation onto detector
network

(a) plus mode (c) breathing mode

y X ory y

(b) cross mode (d) longitudinal mode

a GW170814: pure tensor
polarization strongly
favored over pure scalar or
vector polarizations

(e) vector-x mode

©) A  —

() vectoir-y mode



Testing GR with BBH mergers

0 Most relativistic binary PHYSICAL REVIEW X 6, 041015 (2016)
pulsar known today

» J0737-3039, orbltalveIOC|ty ‘ 0 I t Qi - a 1*
v/c ~2x 107 ‘

O BBH mergers orET i
> Strong field, non linear, i ’§ AN " ; * & o= ¢ v ,

high velocity regime

v/c ~ 0.5 Gl L
Q No evidence for deviation = = TP L1
from GR in waveform, "':f:ff’ —-——g g _;,55! i o ‘ !
place empirical boundson . o o o
high order post- ‘ — . B
Newtonian coefficients inspiral merger/ringdown
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Testing some GR cornerstones (l)

- 25004 Lightcurve from Fermi/GBM (10 — 50 keV)

£ 2250

P ]| } m b a
7501

0 Equivalence principle
» EM radiation and GWs

background gravitational potentials in

the same way ?
> Shapiro delay dls = —

2.6 %1077 < vaw — Yem < 1.2 x 107°
0 Many alternative theories of gravity

ruled out

GW propagation speed
» GW170817 - GRB 170817A: delay of 1.74 £
0.05 s over > 85 million years propagation

» Assume Gamma emission delayed by [0,10]s

_3x 10 B YW VEM 7 o6
VEM

affected by

1 ~ Yo .
Al / U (x(1))dl

RN

APS/Alan Stonebraker

N
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Testing some GR cornerstones (ll)

0 Lorentz invariance: Look for possible dispersion in signal
propagation

2 B
()
c AgE
O GW150914 + GW151226 + GW170104
Ag > 1.6 X 1013 km

PRL 118, 221101 (2017)

> Bound graviton mass g < 7.7 X 10723 eV /2
» More constraining than bounds from Solar System and binary
pulsar observations

> Less constraining than model dependent bounds from large
scale dynamics of galactic clusters and weak gravitational
lensing observations
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Source Distance

a CBC sources are standard sirens
> Masses encoded in waveform

» Once masses are known,
amplitude gives distance

» But some degeneracy with binary

inclination and source location
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Measuring the Hubble Constant
Uy — Hod

a GW17081 — AT2017gfo s N
> GW only Hubble flow velocity Distance
: . . from host galaxy NGC4993 from GW
» Luminosity distance = ‘
408, Mpc at 90% CL Ho = 70.07 3% kms=! Mpc™!
> Assuming sky pOSitiOﬂ of - Independent of any cosmic distance ladder
ATZO 17gf0 : : —_— ;;I(HD Lin?USl?)
= d=438"27Mpc at 68% CL 004 1

> H, uncertainty from
statistics, geometrical
degeneracy with system  zo=1
inclination, and galaxy
peculiar velocity

0.00

T T T T T T T T
50 60 70 80 90 100 110 120 130 140

Hp (kms~ Mpc™1) 27
Nature 551, 85 (2017)



Prospects for Near Future

02:1/2 — 1/4 of the design sensitivity of Advanced LIGO
and Advanced Virgo

Currently both LIGO and Virgo improving sensitivity of
instruments

Next: ~1 year long O3 run

» Start early 2019

> LIGO BNS range ~ 120 Mpc, Virgo ~ 65 Mpc

Best guesses for O3

» BBH: Several per month to several per week

» BNS: 1to 10 in the year-long run

» NSBH: N=0 not ruled out in any scenario, most give ~50% N>0
More events, more physics... more breakthroughs?

> Eagerly waiting for next galactic supernova



Conclusion

0 A growing family of GW transient sources

» 6 BBH mergers, including first triple detection with
Advanced Virgo

» 1 BNS merger, with multi-wavelength follow-up
0 Multi-messenger GW astronomy now a reality

0 GW observations are delivering the expected
returns for fundamental physics, astrophysics,
cosmology

0 Full O2 analyses on-going
Q More to come in O3...
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