

Milti-Messenger Astronomy

Detection of a high energy cosmic ray source

Shigeru Yoshida ICEHAP - Chiba university

Multi-Messenger framework

Multi-Messenger framework

Multi-Messenger framework

Shigeru Yoshida CRIS 2018

Why v is so powerful to explore high energy universe?

The Cosmic Neutrinos Production Mechanisms

CHIBA

How can we identify cosmic ray sources via neutrino detection?

Neutrinos from a cosmic ray source

Astronomical objects within the direction of 3PeV v detected in 2014

Which one is Cosmic Pevatron ??

We need *Timing coincidence* ! (Remember the GRB tale!)

CHIBA

Realtime Multi-Messenger

South Pole

Northern Hemisphere

WISCONSIN ICECUBE PARTICLE ASTROPHYSICS CENTER

GCN-TAN

Shigeru Yoshida CRIS 2018

CHIBA UNIVERSITY

IceCube Neutrino Observatory

IceCube Highlight → Justin's talk tomorrow!

CHIBA

IceCube Realtime Analysis Chain

Deliver of public alerts via GCN

And the story began here

SMS notice pinged my (non-smart) cellphone

5:55 am, Saturday, September 23, JST

the greatest wakeup call I've ever had in Saturday morning

Event selections for EHE real time stream Inspired by the IceCube's GZK/cosmogenic v search Relaxed cuts on NPE-cos(zenith) plane for track-like EHE sample $(\chi^2_{EHE trackfit} < 80)$

Atmospheric BG

E⁻² signal

CHIBA

IceCube 170922A NPE 5,786 cos(zenith) -0.13

Atmospheric BG

E⁻² signal

IceCube 170922A

NPE 5,786 cos(zenith) -0.13 right on the "sweat spot" signalness : 56.5 % Atmospheric BG E⁻² signal

Neutrino Energy ? Initial estimate reported in the GCN: 120 TeV

$v \text{ Energy Vs NPE (E}^{-2.5})$

Neutrino Energy Flux

Summary of the follow-up observations

Observatory	Observation Time	Detection	Source	Comments
Fermi-LAT	Sept 15-27	1	TXS 0506+056 / 8FGLJ0509.4+0541 / 8FHLJ0509.4+0542	Flaring >800 MeV
Swift-XRT	Sept 28 00:09-22:42 UT Sept 27 18:52 UT, 5 ks Sept 80 - Oct 7, 2 ks	1	1SXPS J050925.9+054184	Spectral softening/evolution
Liverpool	Sept 28, 900 s	1	TXS 0506+056 (PMN J0509+0541)	Typical BL Lac spectrum "Bluer when brighter"
ASAS-SN	-50 days	1	TXS 0506+056	~0.5 mag in V-band
AGILE	Sept 18 12:00 UT + 8 days ±6 days	1	< 1° from 8FGLJ0509.4+0541	Excess > 100 MeV
H.E.S.S.	Sept 23 01:05 UT, 1 hr Sept 24 08:10 UT, 1 hr	×		Set 90% CL UL on v fluence
HAWC	Sept 15 09:04 UT - Sept 19 14:41 UT Sept 21 08:41 UT to Sept 27 14:10 UT	×		At T0, this location was not in HAWC's fov
ANTARES	±1 hr and ±1 day of T0	×		Set 90% CL UL on V fluence
INTEGRAL	±800 s of T0	×		Set 8 σ UL
IC multi-day	Sept 15 00:00 UT - Sept 29 00:00 UT	×		
VERITRAS	Sept 28, 1 hr + Sept 28-89, 5.5 hrs	×		~200 GeV

Fermi Blazar TXS 0506+56 Right on top of IceCube 170922A

23

018

Fermi Blazar TXS 0506+56

Made By public tool FAVAI

VHE γ detection by MAGIC

$\sim 5\sigma$ detection

E > 100 GeV

ATel #10817; *Razmik Mirzoyan for the MAGIC Collaboration* on 4 Oct 2017; 17:17 UT Credential Certification: Razmik Mirzoyan (Razmik.Mirzoyan@mpp.mpg.de)

Subjects: Optical, Gamma Ray, >GeV, TeV, VHE, UHE, Neutrinos, AGN, Blazar

Referred to by ATel #: 10830, 10833, 10838, 10840, 10844, 10845, 10942

Tweet Recommend 448

CHIBA

Optical follow-up Kanata's follow-up 1.5 m dish at Hiroshima, Japan

September 23

September 24

Residual

Kanata optical imaging and polarimetric followups for possible IceCube counterpart TXS 0506+056

ATel #10844; M. Yamanaka, Y. T. Tanaka, H. Mori, K. S. Kawabata, Y. Utsumi, T. Nakaoka, M. Kawabata., and H. Nagashima on behalf of Kanata and OISTER teams. on 12 Oct 2017; 15:50 UT Distributed as an Instant Email Notice Transients Credential Certification: Masayuki Yamanaka (masyamanaka@hiroshima-u.ac.jp)

Subjects: Infra-Red, Optical, Blazar, Transient

Referred to by ATel #: 10861, 11430, 11489

Stay tuned NEXT MONTH

No Blazars as major sources

PeV

Blazar stacking analysis

THE CONTRIBUTION OF *FERMI*-2LAC BLAZARS TO DIFFUSE TEV-PEV NEUTRINO FLUX

TeV

M. G. Aartsen¹, K. Abraham², M. Ackermann³, J. Adams⁴, J. A. Aguilar⁵, M. Ahlers⁶, M. Ahrens⁷, D. Altmann⁸, K. Andeen⁹, T. Anderson¹⁰

Show full author list

Published 2017 January 17 • © 2017. The American Astronomical Society. All rights reserved.

The Astrophysical Journal, Volume 835, Number 1

EeV

Search for a cumulative ν excess from 862 2LAC blazars

Another big question

The (yet-unknown) UHECR sources are also the origin of IceCube TeV V?

VERSITY

UHECR-IceCube ~ v ~ Unified ~ Model

The (yet-unknown) UHECR sources are also the origin of IceCube TeV V?

A genetic analytical model

- Optical Depth 0.1
- SFR-like evolution

Can be consistent with UHECR data and ν UL at higher energies

taking the formula from Yoshida & Takami PRD 2014 Yoshida & Ishihara PRD 2012

UHECR-IceCube ~ v ~ Unified ~ Model

The (yet-unknown) UHECR sources are also the origin of IceCube TeV V?

A genetic analytical model

- Optical Depth 0.1
- FSRQ-like evolution

Inconsistent with v UL at higher energies

taking the formula from Yoshida & Takami PRD 2014 Yoshida & Ishihara PRD 2012

Tracing *history* of the particle emissions with v flux

33

color : emission rate of ultra-high energy particles

IceCube collaboration Phys.Rev.Lett.**117** 241101(2016) errutum **119** 259902 (2017)

UHECR source is cosmologically LESS evolved

Any sources with evolution compatible or stronger than star formation rate are disfavored

the observed TeV-PeV ν flux and UHECRs

CHIBA

CHIBA

UHECR-IceCube ~ v ~ Unified ~ Model

Energetics requirements

c.f. GRB $L_{\gamma} \simeq 10^{44} \text{ erg/Mpc}^3 \text{ yr}$ FSRQ $L_{\gamma} \simeq 10^{46} \text{ erg/Mpc}^3 \text{ yr}$

UHECR-IceCube v Unified Model genetic requirements to UHECR sources

cosmological evolution compatible or weaker than star formation rate

IceCube bounds on GZK $\boldsymbol{\nu}$

Fermi extra-galactic diffuse γ -ray bound

optical depth $\tau > 0.01$ if E^{-2.6}, $\tau > 0.1$ if E^{-2.3} or harder

IceCube TeV-PeV ν flux

c.f. GRB internal shock τ ~0.1, afterglow O(10⁻³), BL Lac O(10⁻⁶)

Energy luminosity O(10⁴⁸) erg/Mpc³ yr @ E>10 PeV

extrapolated from UHECR luminosity

BL Lac, GRB internal shocks, FSRQs all unlikely

A major class of (UHE) cosmic ray sources is CHIBA VINIVERSITY

The solution

IceCube-Gen2

Shigeru Yoshida CRIS 2018

IceCube-Gen2 the staging strategy

IceCube-Gen2 Phase1

towards precise measurements of ice's optical characteristics

Improving the angular resolutions of v-induced shower events for multi-messenger astronomy

Yes we can! 4 degree error

With better understandings of **C light scattering**

D-Egg detectors map out Ice

D-Egg schematics

D-Egg prototypes

IceCube upgrading coming soon

We are hiring two postdocs

Contact me if you are interested