

The EUSO Balloon Program

Lawrence Wiencke Colorado School of Mines June 19th 2018 Cosmic Ray International Symposium Portopalo di Capo Passero, Italy Iwiencke@mines.edu

POEMMA

POEMMA will open two new Cosmic Windows: Neutrinos from astrophysical to cosmogenic (> 10s PeV) and UHECRs (> 10s EeV) to realize charged-particle astronomy

Space provides order of magnitudes improved sensitivity over a wide range of energies.

POEMMA's goal is to understand the most extreme astrophysical accelerators and explore fundamental physics well above terrestrial accelerator energies.

POEMMA UHECRs

Stereo observation of the air fluorescence signal of EASs:

- Achieve significant increase in exposure via spacebased observations (x10 arrays; x100 fluorescence) with full-sky coverage
- Achieve good angular and energy resolution
- Achieve sufficient X_{MAX} resolution to perform UHECR composition measurements

UHECR Exposure History

POEMMA Neutrinos

POEMMA designed to observe neutrinos with E > 10s PeV through Cherenkov signal of tau decays.

POEMMA Neutrinos

POEMMA designed to observe neutrinos with E > 10s PeV through Cherenkov signal of tau decays.

3 flavors of Astrophysical and Cosmogenic neutrinos reach Earth. Tau neutrinos generate tau leptons on their way out of the Earth's surface which decay producing up-going showers, which POEMMA can detect.

POEMMA Neutrino Detection

POEMMA designed to observe neutrinos with $E_v \gtrsim 10$ PeV through the Cherenkov signal from upward-moving EAS induced by tau decays in the atmosphere

See Hallsie Reno's talk U17.00002 : Tau neutrino signals at POEMMA

Flux1: Mixed-Composition, Kotera, Allard, Olinto (JCAP 1010:013,2010)

POEMMA INSTRUMENT

Two 4 meter F/0.64 Schmidt telescopes: 45 deg FoVHybrid focal surface (MAPMTs and SiPM)3 mm linear pixel size: 0.084 deg pixel FoVInstrument Mass: 1,547 kgPrimary Mirror:4 meter diameterCorrector Lens:3.3 meter diameterFocal Surface:1.6 meter diameterOptical Area_{EFF}:~6 to 2 m2Power:550 WData:1.GB/day

Stowed Configuration Launch

POEMMA MISSION

Class B Mission 3-year Prime Mission, 5-year Mission Goal LEO 525 km, 28.5° inclination ~1500 km to 25 km separation Controlled re-entry/decommission Phase A start 10/2023 (NASA HQ guidance) Launch 11/2029 (MDL forecast)

Spacecraft have ability to slew for transient event follow-up observations

2018 APS April Meeting

POEMMA UV Fluorescence Detection Hybrid MM Focal Surface

0,2

-0.2

-0.4

-0.6

-0.8

-0.8

-0.6

-0.4

۲ [m] 0.0

using MAPMTs with BG3 filter

0.2

0.4

0.6

0.8

0.0

X [m]

4 Ha 7 <mark>. . .</mark> A HAA HAA HAA HAA HAA HAA HAA 9 7 . . 4 HA HAA HAA HAA HAA HAA HAA

Cherenkov Detection with SiPMs

30 SiPM focal surface units Total 15,360 pixels 512 pixels per FSU (64x4x2)

55 Photo Detector Modules (PDMs)= 126,720 pixels 1 PDM = 36 MAPMTs = 2,304 pixels

2018 APS April Meeting

JEM-EUSO Collaboration

Japan, USA, Korea, Mexico, Russia, Algeria, Bulgaria, France, Germany, Italy, Poland, Romania, Slovakia, Spain, Switzerland, Sweden

16 Countries, 77 Institutions, >300 researchers

EUSO Balloon first flight

EUSO-Balloon: was launched on August, 24 2014 from Timmins, (Canada)

EUSO Balloon first flight

EUSO-Balloon: was launched on August, 24 2014 from Timmins, (Canada)

Helicopter at 3 km

"First observations of *speed* of *light* tracks by a fluorescence *detector* looking *down* on the atmosphere", 2018, JINST 13 P05023, The JEM-EUSO collaboration.

NASA's Long Duration Balloon Program from NZ

"Ton of science Target duration: 100 days"

EUSO-SPB1 Goals

- Objectives:
 - Measure of EAS signals by looking down on the Earth's atmosphere from suborbital space with a fluorescence detector
 - Measure of the UV emission over the ocean and over clouds
 - Search for fast UV pulse-like signatures from other objects
- Flown as NASA mission of opportunity from Wanaka,NZ
 - Targeted flight duration: 100 days

Instrument

Camera

Optics

- Upgrade of previous mission (EUSO-Balloon 2014)
- One PDM (Photon Detection Module) = 9 Elementary Cell (EC) = 36 MAPMTs (Multi-Anode PhotoMultiplier Tubes) = 2304 individual pixels
- Single photoelectron counting mode
- Two 1 m² Fresnel lenses to focus UV light

Instrument

Long duration flight:

- Solar panels
- Ballast hoppers
- Satellite telemetry antennas
- Thermal insulation

EUSO-SPB Specs

SPR Float Height	110000ft = 33.5km		
Si bi lioat neight	110,000 H = 55.5 KH		
Weight			
Detector	2250 lbs		
Payload	2700 lbs w/ SIP, Antennas, Empty Ballast Hoppers		
Dimensions	1.2m x 1.2m x 3m		
Power consumption	40 W Day, 70 W Night (assumes 20W PDM heater @ 50%)		
Telescope	Refractor with 2 Fresnel lenses		
FOV	11. deg (measured w/ stars)		
Camera:	2,304 pixels; 36 MAPMTS (Hamamatsu R11265-113-M64-MOD2)		
Data volume:	Downlinked ~1-1.5 Gb/day		
Recorded	~3 GB/Day w/ 10 hour dark run		
	with trigger rate of 0.2 Hz		
Energy threshold	for h=33 km ~3 EeV		
Ground equivalent Trigger Aperture			
	250 km^2sr @ 3 EeV to ~500 km^2 sr @ 10 EeV		

Transported **fully assembled** EUSO-SPB1 telescope from Golden CO to Utah Desert for field testing 1000 mi round trip

Dashed Line: Flight Ready balloon payloads must be able to tolerate bumps of **about 0.5 g** during transport to launch site (NASA requirement)

Preflight Tests in the Desert

- Field tests: FoV, absolute calibration, detection threshold
 - Setup at Telescope Array site near Delta, UT
 - Using artificial light sources (UV-LED and laser)
 - Thanks to the Telescope Array collaboration (hosting instrument)

Detection Threshold

- 2 lens:
 - 943 ± 17 µJ
 (3.5 EeV
 equivalent as
 seen from above)
- 3 lens:
 - 1973 ± 34 µJ
 (7.4 EeV)

EUSO-SPB1: Reconstruction

- Different laser zenith angle
- Reconstructed value follows expectational
- Angular resolution increases with longer track
- Angular resolution better than 1°

SPB1 Wanaka NZ February 2017

C.'00 - 0101

Launch Ready

Passed the Launch Readiness Review on 25th of March, 2017

EUSO-SPB1: Launch

• 24/04/2017 23:51 UTC

Pressurization

Flight Summary

- Flight duration: 12d 4h
- Terminated 300 km SE of Easter Island
 - Payload lost
- ~30 h (1793 min) of data downloaded

In flight "Health LED" every 16 seconds

UV-Emission and Trigger Rate

Ground Source

"UCIRC" IR Camera Image

- Recorded 25/04/2017 at 08:32:34 UTC (hours after launch)
- Velocity of source similar to speed of balloon (30km/h)
- Frequency of the source is 100Hz (AC frequency in NZ is 50Hz)
- Signal spread equal to instrument PSF (point source)

38

10³

10²

10

<mark>_</mark> 10^{_1}

Low Energy Direct CR passing through camera

SPB1 Summary

- EUSO-SPB1 was successfully launched end of April 2017
 - Mission of opportunity
- Extensive Preflight Ground tests of flight instrument in the desert
 - lasers, LEDs, aircraft, stars, meteorite

- Stable instrument was flown for 12 days (less time than expected)
- 30 hours of data recorded and downloaded
- Upper limit on expected event rate during flight ~1.2 events
- No Extensive Air Shower Events found

	Institution	EUSO-SPB2 Science Team	Current Activities
AL	CDTA	M. Traiche	Simulations
FR	APC	G. Prévôt, P. Gorodetzky, S. E. Parizot	Photon Detection Module (PDM)
FR	LAL	S. Dagoret	Electronics
FR	OMEGA	S. Blin	Electronics -ASICS
GER	KIT	A. Haungs, <u>W. Painter</u>	SiPM prototype from SPB1
IT	INFN & U. Napoli	G. Osteria, <u>V. Scotti</u> ,	CPU, Fluorescence Detector (DAQ)
IT	INFN & U. Torino	M. Bertaina F Fenu K. Shinozaki	Trigger Algorithms, Simulations, lab testing
IT IT	INFN & Univ. Bari UTIU	F. Cafagna C. Fornaro	Flight Software. Opps Center DAQ Software
IT	LNF-INFN, Frascati	M.Ricci	Italian coordinator
JA	RIKEN	M. Cassolino, T. Ebisuzaki, Y. Takizawa, L. Piotrowski,	Optics, PMT testing Opps Center
MX	UNAM	G. Medina-Tanco	Thermal Modeling
POL	NCBJ	J. Szabelski	Fluorescence Detector Embedded HV system
RUS	MSU	P. Klimov	PDM prototype + ZYNQ (K-EUSO)
US	U. Chicago	A. Olinto (PI), S. Meyer,	IR Camera (UCIRC)
US	CSM	L. Wiencke (Dep. PI), F. Sarazin, <u>J. Eser</u>	Telescopes – Mechanical, Testing, Integration Calibration, Simulations
US	MSFC	M. Christl, R. Young	Gondola, SIP Interfacing
US	UAH	P. Reardon, J.Adams, E. Kuznetsov,	Optics Design, Solar Power
US	Lehman U.	L. Anchordoqui	MAPMTs 44

Science Goals:

EUSO-SPB2

Build upon the EUSO-SPB1 experience (and EUSO-Balloon) to pave the way towards the POEMMA mission

New Unexplored Areas:

- Detect Cherenkov from UHECRs from near space
- Measure the **background of up-going Tau** decays from BZ Neutrinos
- Also thinking about the ANITA-4 tau-like events
- Study Fluorescence from High Altitude Horizontal Showers (HAHAs)

Detect Fluorescence from Above:

- Confirm expectations from ground observations
- *lower energy threshold and larger acceptance relative to EUSO-SPB1

Simulation Results 33km altitude observation (SPB2): $\beta_F = 5^\circ$

E(33 kr) $\beta_E(525 \text{ km})$ $\beta_E(1000 \text{ km})$ $\Delta \alpha$ 3.6 7.08.2 1 $\overline{2}$ 5.210.0 11.7 3 6.6 12.314.57.9 4 14.416.959.1 16.219.010.318.0 21.06 11.419.622.87 12.621.224.68

POEMMA **Simulations Team** Krizmanic et al

GSSI Workshop on Cerenkov Light Detection from Space

15

800

900

20

19

EUSO-SPB2

Technical Goals:

Test instrumentation and methods for POEMMA

Many (3) Telescopes

- 2 Cherenkov ~10 ns PeV Scale
- 1 Fluorescence 1 us EeV Scale

Schmidt Optics, same for all telescopes Bi-Focal alignment for Cherenkov

Tilting, perhaps to NADIR (fluorescence)

SiPMs qualification for POEMMA Ancillary Devices (IR camera, AMON, (LIDAR?) In flight calibration with Stars (in POEMMA mission design) Preflight field tests - US: Desert, Mountain

Long Stratospheric Flight 100 day target

Cherenkov Bi-focal Optics

Also Telescope Shutters IR camera

UV sensors

Solar Power

NASA SIP

Fluorescence

Cherenkov Telescopes FoV 5° X 45° bi-focal mirror FoV 5° X 45° normal mirror **Fluorescence Telescope** FoV 15° X 45° normal mirror

Cherenkov

Corrector Plate: 1m² Image resolution: ~ few mm Pixel size: ~3mm square

Bi-focal Mirror Concept (Cherenkov Telescope)

FD Focal Surface

SPB1 Photo Detector Module (PDM) 9 Elementary Cells

SPB1 Elementary Cell (EC)2x2 64 Channel Hammatsu Multi-annode PMTsBase, HV (+ digitization for SPB2)

Fluorescence Detector Focal Surface

SPB1 Photo Detector Module (PDM) 9 Elementary Cells

48x48=2304 pixels Single Photoelectron Counting 1.0 μS time bins (fluorescence) 1 "video clip" = 128 time bins ~15 watts

deg

~15

SPB1 Elementary Cell (EC)2x2 64 Channel Hammatsu Multi-annode PMTsBase, HV (+ digitization for SPB2)

GEOMETRY

EUSO-SPB2 OBSERVABLE REGION FOR ELVES

$$L = L_1 + L_2 = \sqrt{(R_E + h_i)^2 - R_E^2} + \sqrt{(R_E + h_t)^2 - R_E^2} \approx 1000 + 600 = 1600 \text{ km} \quad (1)$$

$$L' = \sqrt{(R_E + h_i)^2 - (R_E + h_t)^2} \approx 800 \text{ km}$$
(2)

$$\theta = \frac{\pi}{2} - \cos^{-1} \frac{L_2}{R_E + h_t} \approx 5.6 \text{ degrees}$$
(3)

Possible telescope

with $R_E = 6370$ km, $h_i = 80$ km, $h_t = 30$ km.

2015: 32 d 5 h 2016: 46 d 20 h

2017: 12 d 4 h

2022: 100 d?

Summary

EUSO-SPB1 Successful Launch, 12 Day flight 2017 Most Data Downloaded (loss of half of telemetry, premature termination) Detector performed well. Stable, measure UV emission, direct CRs..

EUSO-SPB2 Improved Multi-Telescope Instrument, builds on SPB1 experience Add unexplored areas Cherenkov, Neutrino Backgrounds, High Altitude EASs Scientific and Technical Pathway toward POEMMA

POEMMA will open two new Cosmic Windows: neutrinos from astrophysical to cosmogenic, and extreme energy cosmic ray (> 10s EeV)

Space provides order of magnitudes improved sensitivity over a wide range of energies.