Study of the origins of ultra-high energy cosmic rays with the Pierre Auger Observatory

Quentin Luce, CRIS 2018, 19th June 2018

Introduction

Pierre Auger Observatory:

Detection surface of **3,000 km²** located in the argentinian Pampa, at an altitude of 1,400 m above sea level with a total exposure in 2017 of **76,800 km² sr⁻¹ yr⁻¹**

Detection of atmospheric air shower

Objective: Determination of the origin of the Ultra-High Energy Cosmic Rays

Fluorescence detector (FD):

24+3 telescopes in 4 sites FoV of 1 telescope: 30° in elevation and 30° in azimtuh

> ~10% duty cycle Full efficiency above 0.6 EeV

Surface detector (SD):

1,600 water Čerenkov station Spaced by 1,500 meters (or 750 meters) **100% duty cycle** Full efficiency **above 4 EeV**

Two different data sets

A discovery at large scale

Obersvation of a Large-scale Anisotropy in the Arrival Directions of Cosmic Rays above 8x10¹⁸ eV

Science 357 (2017) no.6537, 1266-1270

Rayleigh analysis in right ascension

Study in two energy ranges, **4 EeV < E < 8 EeV** and **E > 8 EeV**

First-harmonic Fourier components:

>8

32,187

$$a_{\alpha} = \frac{2}{N} \sum_{i=1}^{N} w_i \cos \alpha_i \qquad b_{\alpha} = \frac{2}{N} \sum_{i=1}^{N} w_i \sin \alpha_i$$

$$w_i \text{ take into account nonuniformities in exposure (±0.6\%) \text{ and tilt (-0.2°) of the surface array}$$

$$Amplitude \text{ and phase of the first-harmonic:}$$

$$r_{\alpha} = \sqrt{a_{\alpha}^2 + b_{\alpha}^2} \qquad \tan \varphi_{\alpha} = \frac{b_{\alpha}}{a_{\alpha}}$$

$$Deviation from isotropy: (Linsley, 1975)$$

$$P(r_{\alpha}) = \exp(-Nr_{\alpha}^2/4)$$

$$Fourier = Fourier coefficient a_{\alpha} coefficient b_{\alpha} \frac{r_{\alpha}}{r_{\alpha}} \frac{[^{\circ}]}{P(2)} \frac{P(\ge r_{\alpha})}{P(\ge r_{\alpha})}$$

First harmonic significant at the 5.4σ level after penalization

 0.046 ± 0.008

 -0.008 ± 0.008

 $0.047^{+0.008}_{-0.007}$

 100 ± 10

 2.6×10^{-8}

Reconstruction of the dipole above 8 EeV

Combination of the Rayleigh analyzes to extract the dipole amplitude:

in right ascension \rightarrow sensitive only to the orthogonal component to the Earth's axis in azimuth angle \rightarrow projection along the Earth's axis

Amplitude $d = 6.5^{+1.3}_{-0.9}$ %

Longitude $l = 233^\circ$, Latitude $b = -13^\circ$

Implication on the origin of the UHECR:

Dipole direction far away from the Galactic center (~125°). Above 40 EeV, no anisotropies associated with Galactic plane or Galactic center 2MRS dipole x GMF deflection \rightarrow observed dipole?

Extragalactic origin of the highest energy cosmic rays

Indication at intermediate scale

Indication of Anisotropy in Arrival Directions of Ultra-High Energy Cosmic Rays through comparison to the flux Pattern of Extragalactic Gamma-ray Sources

Astrophys.J. 853 (2018) no.2, L29

Extragalactic tested population

Starburst galaxies

M82

Intense star formation + winds

23 objects from *Fermi-LAT* observations within 250 Mpc with a radio flux at 1.4GHz > 0.3 Jy

Nearby galaxies

e.g.: NGC253, M82, NGC4945, NGC1068

Active Galactic Nuclei

Centaurus A

Jets and radiolobes

17 objects from 2FHL catalog within 250 Mpc (Fermi-LAT, > 50 GeV)

More distant galaxies

e.g.: Centaurus A, Mkn421, Mkn501

Maximum likelihood analysis

~ 5,500 events recorded by the Pierre Auger Observatory above 20 EeV Source of the anisotropic component modeled as a **Fischer distribution** centered on its coordinates

Resulting maps

Model Excess Map - Active galactic nuclei - E > 60 EeV

Residual Excess Map - Active galactic nuclei - E > 60 EeV

Other sky models

To conclude

Science 357 (2017) no.6537, 1266-1270

Observed Excess Map - E > 39 EeV

Discovery: Above 8 EeV → 27,000 events have shown presence of a dipole with a significance at 5.4σ

Extragalactic origin

Longitude $l = 233^{\circ}$ Latitude $b = -13^{\circ}$ Amplitude $d = 6.5^{+1.3}_{-0.9} \%$

Indication: Above 39 EeV \rightarrow from ~900 events, indication of anisotropy with a significance of 4.0 σ for starburst catalog (fraction $\alpha = 10$ %)

Other catalogs: 3.2σ for Swift-BAT catalog 2.7σ for AGN catalog 2.7σ for 2MRS catalog

In the future...

Sources are still unknown !

How to connect intermediate and large angular-scale anisotropy?

Back-Up

Reconstruction of SD event

SD event = at least 3 triggered stations

From each station, extraction of its **start-time** (time of the first particles in the station) and of its **signal**

Correction of the SD energy

Results

Test hypothesis	Null hypothesis	Threshold energy ^a	TS	Local p-value $\mathcal{P}_{\chi^2}(\mathrm{TS},2)$	Post-trial p-value	1-sided significance	AGN/other fraction	SBG fraction	Search radius
SBG + ISO	ISO	39EeV	24.9	$3.8 imes 10^{-6}$	3.6×10^{-5}	4.0σ	N/A	9.7%	12.9°
γ AGN + SBG + ISO	γ AGN + ISO	39EeV	14.7	N/A	$1.3 imes 10^{-4}$	3.7 σ	0.7%	8.7%	12.5°
γ AGN + ISO	ISO	60EeV	15.2	$5.1 imes 10^{-4}$	3.1×10^{-3}	2.7σ	6.7%	N/A	6.9°
γ AGN + SBG + ISO	SBG + ISO	60EeV	3.0	N/A	0.08	1.4σ	6.8%	$0.0\%^{ m b}$	7.0°
Swift-BAT + ISO	ISO	39EeV	18.2	$1.1 imes 10^{-4}$	$8.0 imes 10^{-4}$	3.2 σ	6.9%	N/A	12.3°
<i>Swift</i> -BAT + SBG + ISO	Swift-BAT + ISO	39EeV	7.8	N/A	5.1×10^{-3}	2.6σ	2.8%	7.1%	12.6°
2MRS + ISO	ISO	38EeV	15.1	$5.2 imes 10^{-4}$	$3.3 imes 10^{-3}$	2.7 σ	15.8%	N/A	13.2°
2MRS + SBG + ISO	2MRS + ISO	39EeV	10.4	N/A	$1.3 imes 10^{-3}$	3.0 σ	1.1%	8.9%	12.6°

^aFor composite model studies, no scan over the threshold energy is performed.

 b Maximum TS reached at the boundary of the parameter space.

ISO: isotropic model.

TS with attenuation

Model flux maps

Flux limited starburst catalog?

Construction of the catalog by excluding **galactic plane** and with a poor exposure below **declination** of -35° \rightarrow incompleteness of startburst catalog?

Reconstruct luminosity functions of starburst catalogs Ackermann et al. (2012) and Becker et al. (2009)

Model of luminosity functions from flux-limited sample in Yun et al. (2001) and Mauch et al. (2007)

Cut at 0.4 Jy = best compromise

 \rightarrow Removal of **4%** of total cumulated flux from faint sources

→ Do not influence the previous results