A decade of Cosmic Rays Investigation with the PAMELA Experiment

Istituto Nazionale di Fisica Nucleare

Martucci Matteo matteo.martucci@roma2.infn.it University of Rome «Tor Vergata» INFN Sezione di Roma2 Università di Roma Tor Vergata

Cosmic Ray International Seminar (CRIS) 2018 18-22 June 2018 - Portopalo di Capo Passero (SR) - Italy

PAMELA Collaboration

PAMELA orbit

PAMELA instrument

UNIVERSITA' degli STUDI di ROMA TOR VERGATA

GF: 21.5 cm² sr Mass: 470 kg Size: 130x70x70 cm³ Power Budget: 360W

PAMELA positron fraction

PAMELA positron fraction

Good agreement with AMS02! 0.35 PAMELA 0.3 Fermi AMS-02 0.25 [`]₽+ •₽/ •⁰0.15 ₽ ₽ ₽ 0.1 0.05 0 10² 10³ 10 1 E (GeV)

PAMELA positrons

UNIVERSITA' degli STUDI di ROMA TOR VERGATA

Results confirmed by AMS02!

Cosmic-Ray Positron Energy Spectrum Measured by PAMELA

O. Adriani *et al.* Phys. Rev. Lett. **111**, 081102 – Published 19 August 2013

Physics See Synopsis: A Long, Hard Look at Cosmic-Ray Positrons

PAMELA antiprotons

UNIVERSITA' degli STUDI di ROMA TOR VERGATA

Consistent with secondary production models

Comparison with AMS02/BESS

Flux $[(m^2 s sr GeV)^{-1}]$ Very good agreement! BESS polar I (2004) BESS polar II (2007-2008) AMS02 (2011-2015) PAMELA (2006-2009) 10^{-3} O. Adriani et al., Nuovo 2×10⁻¹ 3×10⁻¹ 5 6 7 8 9 10 Kinetic Energy [GeV] 1 2 3 4 Cimento 40 (2017) N. 10 \overline{p}/p 10^{-4} Very good agreement! 10^{-5} BESS polar I (2004) BESS polar II (2007-2008) AMS02 (2011-2015) PAMELA (2006-2009) 10-6 10^{2} 2×10^{2} 5×10⁻¹ 2 4 5 6 7 8 910 1 3 20 30 40 50 Rigidity [GV]

PAMELA H, He and H/He spectra

First high-statistics and high-precision

10³ R (GV) 10

10³ R (GV)

•

O. Adriani et al., Science 332 (2011) 6025

PAMELA boron/carbon

Li, Be, B are produced by fragmentation of heavier nuclei, mostly C, N, O, on H and

PAMELA e⁻ and e⁺

UNIVERSITA' degli STUDI di ROMA TOR VERGATA

Solar modulation

PAMELA observations (2006-2016)

UNIVERSITA' degli STUDI di ROMA T O R V E R G A T A

PAMELA observations covers about one solar cycle

Time Dependance of the e⁻ flux

UNIVERSITA' degli STUDI di ROMA TOR VERGATA

Kinetic Energy [GeV]

Time Dependance of the *p* flux

Martucci, M. et al., ApJL 854 L1 (2018)

Time Dependance of the *He* flux

Time Dependance of the e^{-}/e^{+} flux

The positron to electron ratio measured in this time period clearly shows a sign-charge dependence of the solar modulation introduced by particle drifts

Time Dependance of the e^{-}/e^{+} flux

O. Adriani et al., PRL 116, 241105 (2016)

Time Dependance of the e^{-}/e^{+} flux

O. Adriani et al., PRL 116, 241105 (2016)

Solar Energetic Particles (SEP)

SEP observation on Earth:

- Propagation of SEPs along IMF lines
 - \Rightarrow Earth must be magnetically connected
- Anisotropic emission

 \Rightarrow flux observed on Earth depends on geomagnetic location

Sun can accelerate particles up to relativistic energies

- Magnetic reconnections
- CME-driven shock

SEPs can be observed in the interplanetary space

Often associated to other solar phenomena, eg:

- ► X and gamma-ray flares
- Coronal-mass ejections (CMEs)

PAMELA SEP list

	SEP Event	Flare			CME				m-type II	DH-type II
#	Date	Onset time	Class	Location	1^{st} -app. time	V_{app}	V_{spa}	Width	Onset time	Onset time
1	2006 12/13, 02:55	12/13, 02:14	X3.4	S06W23	12/13, 02:54	1774	2184	Н	12/13, 02:26	12/13, 02:45
2	$2006 \ 12/14, \ 22:55$	12/14, 21:58	X1.5	S06W46	12/14, 22:30	1042	1139	Н	12/14, 22:09	12/14, 22:30
3	2011 03/21, 04:10	$03/21,02{:}00$		N23W129	$03/21,02{:}24$	1341	1430	Н		
4	2011 06/07, 07:20	06/07, 06:16	M2.5	S21W54	06/07, 06:49	1255	1321	Н	06/07, 06:25	06/07, 06:45
5	2011 09/06, 02:20	09/06, 01:35	M5.3	N14W07	09/06, 02:24	782	1232	Н		09/06, 02:00
6	2011 09/06, 23:00	09/06, 22:12	X2.1	N14W18	09/06, 23:05	575	830	Н		09/06, 22:30
7	2011 11/03, 23:00	11/03, 22:00		N09E154	11/03, 23:30	991	1188	Н		
8	$2012 01/23, 04{:}45$	01/23, 03:38	M8.7	N28W21	01/23, 04:00	2175	2511	Н		$01/23,04{:}00$
9	$2012 \ 01/27, \ 18:55$	01/27, 18:03	X1.7	N27W71	01/27, 18:27	2508	2541	Н	01/27, 18:10	01/27, 18:30
10	$2012 \ 03/07, \ 02:50$	03/07, 00:13	X5.4	N17E27	03/07, 00:24	2684	3146	Н	03/07, 00:17	03/07, 01:00
11	$2012 \ 03/13, \ 18:05$	03/13, 17:12	M7.9	N17W66	03/13, 17:36	1884	1931	Н	03/13, 17:15	03/13, 17:35
12	$2012 \ 05/17, \ 01:55$	05/17, 01:25	M5.1	N11W76	05/17, 01:48	1582	1596	Н	05/17, 01:31	$05/17,01{:}40$
13	2012 07/06, 23:30	07/06, 23:01	X1.1	S13W59	07/06, 23:24	1828	1907	Н	07/06, 23:09	07/06, 23:10
14	2012 07/08, 18:10	07/08, 16:23	M6.9	S17W74	07/08, 16:54	1497		157	07/08, 16:30	07/08, 16:35
15	2012 07/19, 06:40	07/19, 04:17	M7.7	S13W88	$07/19,05{:}24$	1631	1631	Н	$07/19,05{:}24$	$07/19,05{:}30$
16	$2012 \ 07/23, \ 08:00$	$07/23,01{:}50$		S17W132	07/23, 02:36	2003	2156	Н		07/23, 02:30
17	$2013\ 04/11,\ 08{:}25$	04/11, 06:56	M6.5	N09E12	04/11, 07:24	861	1369	Н	$04/11,07{:}02$	$04/11,07{:}10$
18	2013 05/22, 14:20	05/22, 13:08	M5.0	N15W70	05/22, 13:25	1466	1491	Н	05/22, 12:59	05/22, 13:10
19	$2013\ 10/28,\ 16:30$	10/28, 04:32	M4.4	S06E28	10/28, 15:36	812	1098	Н		10/28, 15:24
20	$2013\ 11/02,\ 07{:}00$	11/02, 04:00		N03W139	11/02, 04:48	828	998	Н		
21	$2014 \ 01/06, \ 08:15$	01/06, 07:30	X3.5	S15W112	01/06, 08:00	1402	1431	Н	01/06, 07:45	$01/06,07{:}58$
22	$2014\ 01/07,\ 19{:}55$	01/07, 18:04	X1.2	S15W11	01/07, 18:24	1830	2246	Н	01/07, 18:17	01/07, 18:27
23	$2014 \ 02/25, \ 03:50$	02/25,00:39	X4.9	S12E82	$02/25,01{:}25$	2147	2153	Н	02/25,00.56	02/25,00.56
24	2014 04/18, 13:40	04/18, 12:31	M7.3	S20W34	04/18, 13:25	1203	1359	Н	04/18, 12:55	04/18, 13:06
25	2014 09/01, 17:20	09/01, 10:58	X2.4	N14E127	09/01, 11:12	1901	2017	Н		09/01, 11:12
26	2014 09/10, 21:35	09/10, 17:21	X1.6	N14E02	09/10, 18:00	1267	1652	Н		09/10, 17:45

PAMELA SEP spectra

Bruno, A et al, accepted in ApJ!

Consistent with diffusive shock acceleration theories, the measured SEP spectra are well reproduced by a power-law modulated by an exponential cutoff attributed to particles escaping the CME-driven shock during acceleration

UNIVERSITA' degli STUDI di ROMA TOR VERGATA

Cutoff energies fall above and below the GLE threshold (~1 GV). Three GLEs are among the group, but also some events falling above 1 GV that were not registered as GLEs, but might have.

From the spectrum perspective, we see *no qualitative distinction* between those events that are GLEs, those that could be, or those that are not.

Multiparticle observation of Forbush decrease

R. Munini et al., ApJ 853, 1 (2018)

The proton and the helium amplitude and recovery time are in good agreement while electrons on average shows a faster recovery.

This could be interpreted as a charge-sign dependence due to the different global drift pattern between proton and electrons.

Short/Mid-term variations in PAMELA data

O. Adriani et al., ApJL 852, L28 (2018);

UNIVERSITA' degli STUDI di ROMA TOR VERGATA

A periodicity of about 450 days is observed in the proton flux which could be due to known variation in solar activity, called Quasi-Biennial Oscillations, but is also consistent with <u>Jupiter</u> periodicity.

A 13:5 days periodicity is found in the proton flux between December 2006 and March 2007.

This phenomenon could be interpreted as an effect of prominent structures of compressed plasma in the solar wind (CIRs) or to the latitudinal gradient due to the crossing of the HCS.

2006 December – 2007 January

PAMELA overall results

UNIVERSITA' degli STUDI di ROMA TOR VERGATA

Review papers:

- O. Adriani *et al.*, Phys. Rept. 544 (2014) 323
- O. Adriani *et al.*, Nuovo Cimento 40 (2017) N. 10

