

SEARCH FOR COINCIDENT AIR SHOWERS OVER LARGE SCALE DISTANCES WITH THE EEE NETWORK

Paola La Rocca*

on behalf of the EEE Collaboration

* Museo storico della Fisica e Centro Studi e Ricerche Enrico Fermi Department of Physics and INFN Section of Catania

OUTLINE

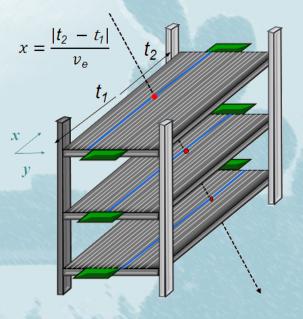
- ✓ The EEE experiment
 - The detector
 - Current status
 - Upgrade plans
- ✓ EEE experiment goals
 - Educational aspects
 - Physics program
- ✓ LDC events search
- ✓ Conclusions

THE EXTREME ENERGY EVENTS PROJECT

EEE experiment: a network of telescopes based on Multigap Resistive Plate Chambers for the detection of cosmic ray muons installed in Italian high schools.

- ✓ Project started in 2004
- ✓ 50 telescopes at high schools
 + 2 telescopes at CERN
 + 4 at INFN Units
 Total: 56 telescopes
 + ≈ 50 institutes on the waiting list

http://eee.centrofermi.it



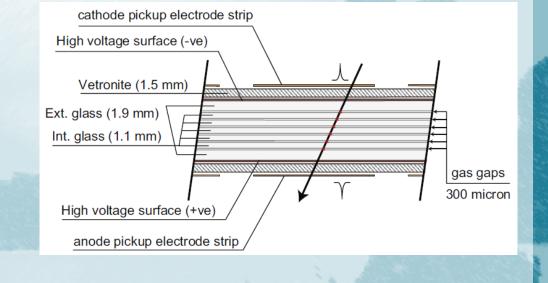
THE MRPC TELESCOPE

EEE station: telescope of 3 MRPC chambers (~ 80 x 160 cm²)

- Reasonable cost
- Long term operation required
- Efficiency close to 100 %
- Reconstruction of muon orientation
- Good time resolution (TOF measurements)

THE MRPC TELESCOPE

CRIS 2018 - Entering the Era of Multi-Messenger Astronomy



5

THE EEE MULTIGAP RESISTIVE PLATE CHAMBER

It is a larger (~ 2 m²) and simpler version of the MRPC developed for the ALICE TOF

 ✓ 6 gas gaps (spaced by 300 µm)
 ✓ C2H2F4(98%) and SF6(2%) continuously fluxed (2l/h)

Spacing the glasses



E Extreme Energy Events Science inside S

THE EEE MULTIGAP RESISTIVE PLATE CHAMBER

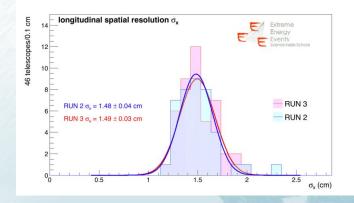
- ✓ 24 readout copper strips laid out on both sides of the stack of glass plates
- ✓ Strip pitch 3.2 cm

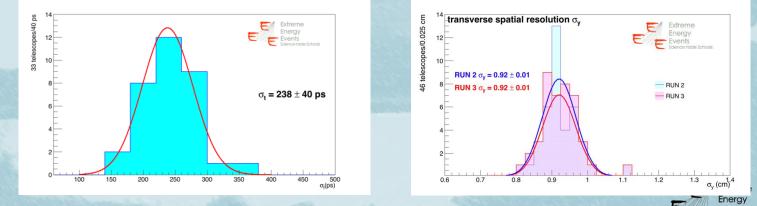
x coordinate: difference of signal arrival times at the strip ends measured by TDCsy coordinate: fired strip

THE EEE MULTIGAP RESISTIVE PLATE CHAMBER

Telescope equipment:

- ✓ 6 FE cards (with NINO chips) for readout and trigger
- ✓ VME-based data acquisition (Trigger card + Multi-hit TDCs)
- ✓ DC/DC converters for HV (±10 kV) to chambers
- $\checkmark\,$ GPS time-stamp of the collected events
- ✓ Weather Station

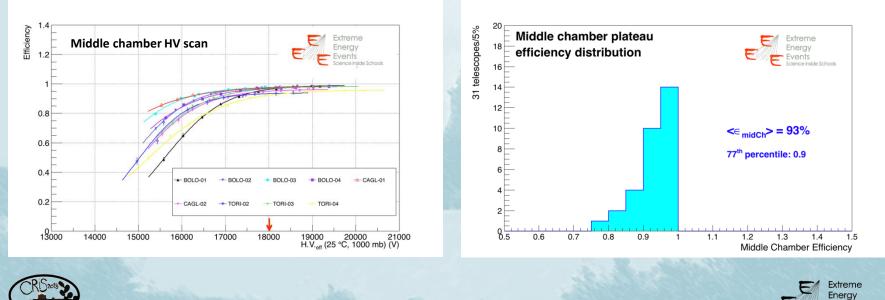



Extreme Energy Events Science inside Schools

PERFORMANCE OF THE EEE MRPCS

Time and spatial resolution of the chambers evaluated on a sub-set of telescopes:

- ✓ Average Time Resolution ~ 240 ps
- ✓ Longitudinal Spatial Resolution \sim 1.5 cm
- Transverse Spatial Resolution ~ 1 cm
 Very good performance compatible with EEE requirements

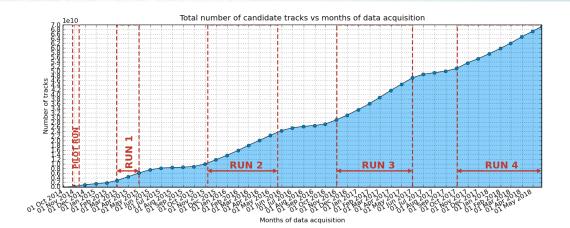


CRIS 2018 - Entering the Era of Multi-Messenger Astronomy

ience inside Schoo

PERFORMANCE OF THE EEE MRPCS

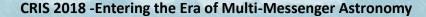
- ✓ Chamber efficiency evaluated on a sub-set of telescopes
- ✓ HV scan performed on the middle chamber during data-taking
- ✓ Average efficiency of the telescope network ~93 %



CRIS 2018 - Entering the Era of Multi-Messenger Astronomy

vents

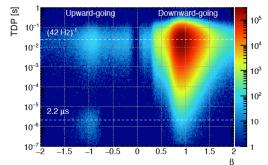
THE EEE NETWORK UPGRADE

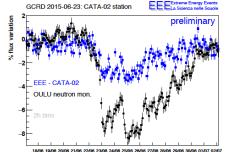

About **70 billion** events collected since the start of organized data taking

Upgrade plans:

- ✓ Build new 20 telescopes
- ✓ New test protocol at CERN
- ✓ New 250 µm six -gap chambers (lower operating voltage, eco-friendly gas)
- ✓ Improved FE boards
- ✓ New trigger GPS board

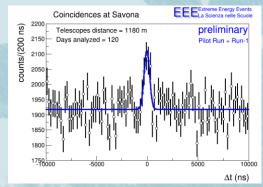
EDUCATIONAL ASPECTS


- ✓ The EEE telescopes are installed in Italian high schools
- High school students and teachers have built their own telescope at CERN and take care of the data taking
- ✓ Introducing high-school students and teachers to high energy physics
- Many activities organized or coordinated by Centro Fermi



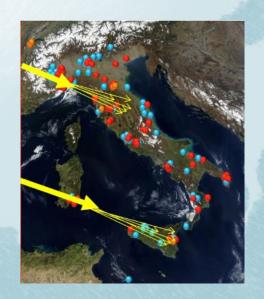
PHYSICS GOALS

Examples of analyses carried out by the EEE Collaboration:


- \checkmark Search for anisotropies of the secondary component
- Forbush decrease \checkmark
- \checkmark Upward going particles
- Detection of Extensive Air Showers
- Long Distance Correlations (LDC) \checkmark

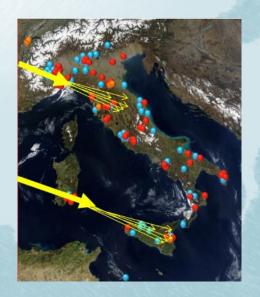
single telescopes

2 or more telescopes in the same town telescopes at distance > EAS extension



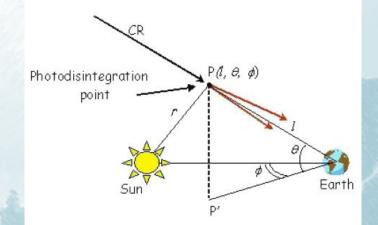
LDC: THE PROBLEM

- Look for cosmic rays time correlations between detectors separated by distances larger than the extension of Extensive Air Showers
- Possible physical mechanisms could justify the existence of LDC, all suggesting a "common history"
 - EAS originating from cosmics emitted by the same source (limited by the presence of magnetic fields)
 - EAS originating from cosmics generated by the interaction of a primary cosmic with the interstellar medium
 - EAS generated by the photodisintegration of primary cosmic rays in the solar field (GZ effect)



LDC: THE PROBLEM

- Look for cosmic rays time correlations between detectors separated by distances larger than the extension of Extensive Air Showers
- Possible physical mechanisms could justify the existence of LDC, all suggesting a "common history"
 - EAS originating from cosmics emitted by the same source (limited by the presence of magnetic fields)
 - EAS originating from cosmics generated by the interaction of a primary cosmic with the interstellar medium
 - EAS generated by the photodisintegration of primary cosmic rays in the solar field (GZ effect)



THE 62 EFFECT

The number of the GZ event/year depends on:

- Primaries mass and energy
- ✓ Solar flux
- ✓ Photo-disintegration probability
- ✓ Solar magnetic field
- ✓ Detection array acceptance

Several numerical approaches:

Zatsepin, 1950; Gerasimova and Zatsepin, 1960; MedinaTanco and Watson, 1999; Epele et al., 1999; Fujiwara et al., 2006; Lafebre et ´al., 2008

 \rightarrow Few GZ events expected per year

Observation of few candidates reported by the LAAS collaboration

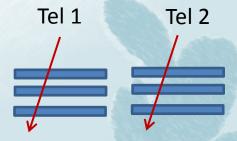
RARE EVENTS \rightarrow NEGLIGIBLE BACKGROUND NEEDED

 ✓ Correlations between independent telescopes (single track events)
 R_{spurious} ≈ 2 x 20 x 20 x 10⁻³ = 0.8 Hz

 Correlations between telescope pairs (extensive air showers)

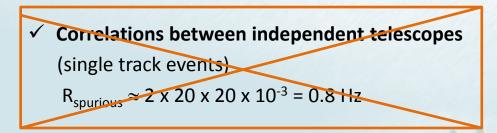
 $R_{spurious} \approx 2 \times 0.04 \times 0.001 \times 10^{-3} = 8 \cdot 10^{-8} \text{ Hz}$ (typical values)

✓ Correlations between multi-track events in both telescopes $R_{sourious}$ (2 tracks) ≈ 2 x 0.02 x 0.02 x 10⁻³ = 8 · 10⁻⁷ Hz


RARE EVENTS \rightarrow NEGLIGIBLE BACKGROUND NEEDED

- ✓ Correlations between independent telescopes (single track events)
 R_{spurious} ≈ 2 x 20 x 20 x 10⁻³ = 0.8 Hz
- Correlations between telescope pairs (extensive air showers)

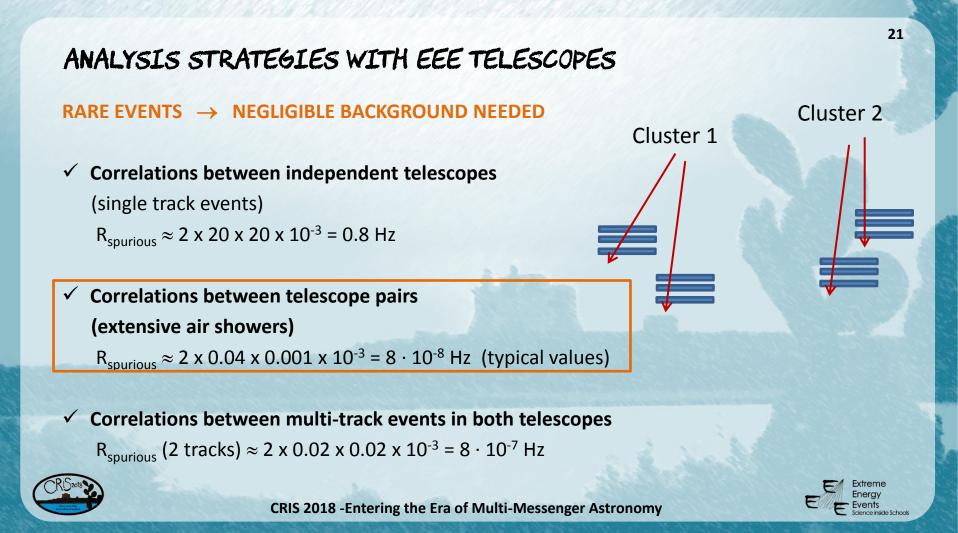
 $R_{spurious} \approx 2 \times 0.04 \times 0.001 \times 10^{-3} = 8 \cdot 10^{-8} \text{ Hz}$ (typical values)


- Correlations between multi-track events in both telescopes
 - $R_{spurious}$ (2 tracks) \approx 2 x 0.02 x 0.02 x 10⁻³ = 8 · 10⁻⁷ Hz

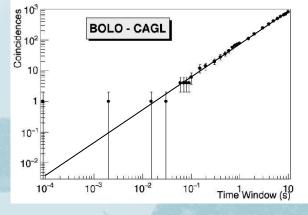
RARE EVENTS \rightarrow NEGLIGIBLE BACKGROUND NEEDED

 ✓ Correlations between telescope pairs (extensive air showers)

 $R_{spurious} \approx 2 \times 0.04 \times 0.001 \times 10^{-3} = 8 \cdot 10^{-8} \text{ Hz}$ (typical values)


✓ Correlations between multi-track events in both telescopes

 $R_{spurious}$ (2 tracks) \approx 2 x 0.02 x 0.02 x 10⁻³ = 8 · 10⁻⁷ Hz

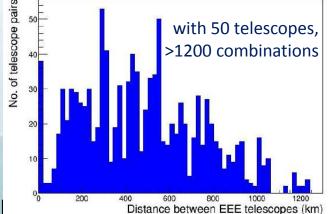


CORRELATIONS BETWEEN TELESCOPE PAIRS

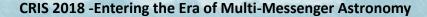
- Analyzed coincidences between the 45 pairs of the 10 EEE cluster sites hosting at least two telescopes
- ✓ 3968 days of time exposure
- ✓ 96 observed events against 77.8 estimated background
- ✓ 5 candidate events with a p-value < 0.05

Event	EEE pairs	Distance (km)	$ t_1 - t_2 $ (µs)	$\vartheta_{\rm rel}$ (deg)	Expected events	p-value
(A)	BOLO-CAGL	614	86	27.1	0.0069 ± 0.0002	0.007
(B)	BOLO-LAQU	290	740	9.1	0.014 ± 0.001	0.014
(C)	CATA-TORI	1040	88	9.2	0.0265 ± 0.0005	0.026
(D)	GROS-TORI	377	297	14.4	0.032 ± 0.001	0.031
(E)	CERN-CATA	1200	248	9.3	0.049 ± 0.001	0.048

Eur. Phys. J. Plus (2018) 133: 34

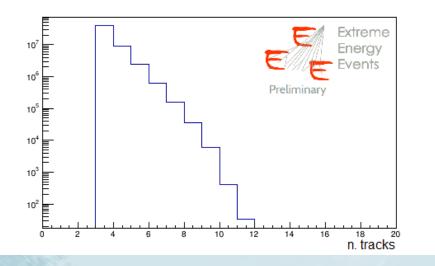


RARE EVENTS \rightarrow NEGLIGIBLE BACKGROUND NEEDED


- ✓ Correlations between independent telescopes (single track events)
 R_{spurious} ≈ 2 x 20 x 20 x 10⁻³ = 0.8 Hz
- Correlations between telescope pairs (extensive air showers)

 $R_{spurious} \approx 2 \times 0.04 \times 0.001 \times 10^{-3} = 8 \cdot 10^{-8}$ Hz (typical value)

Correlations between multi-track events in both telescopes


 $R_{spurious}$ (2 tracks) \approx 2 x 0.02 x 0.02 x 10⁻³ = 8 · 10⁻⁷ Hz

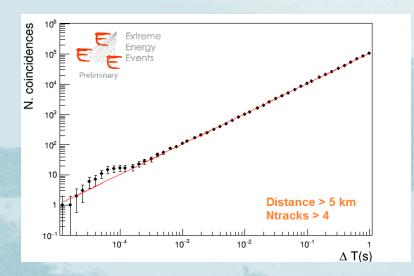
ALTERNATIVE STRATEGIES: MULTI-TRACK EVENTS

Distribution of the number of tracks per event

Telescope 2

Selection of multi-track events: ✓ Chi2 < 50

 ✓ Parallelism constrain (scalar product with the seed track > 0.8)
 → Cuts to be optimized

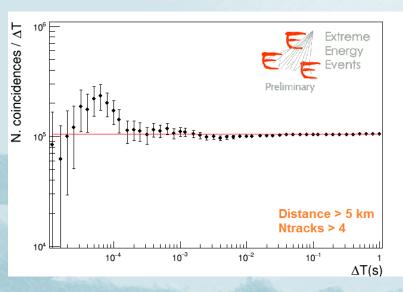


ALTERNATIVE STRATEGIES: MULTI-TRACK EVENTS

Data-set description

No. of telescopes: 39 telescopes + 5 clusters No. of Events: 50 millions of events Period: 2016-01-01 \rightarrow 2018-03-26 (RUN2 + RUN3 + RUN4) = 816 days

Overall number of coincidences between EEE sites as a function of the time coincidence window, compared with the accidental coincidence background (in red)


CRIS 2018 - Entering the Era of Multi-Messenger Astronomy

25

ALTERNATIVE STRATEGIES: MULTI-TRACK EVENTS

Data-set description

No. of telescopes: 39 telescopes + 5 clusters No. of Events: 50 millions of events Period: $2016-01-01 \rightarrow 2018-03-26$ (RUN2 + RUN3 + RUN4) = 816 days

Events excess observed for $\Delta T \approx 10^{-4}$ s

Cuts optimization ongoing:

- Multi-tracks events selection
 - N. of tracks
- Site distance
- Relative angle

CONCLUSIONS

- ✓ Network continuously growing and successfully operating since 14 years
- Excellent performance in terms of time and spatial resolution and efficiency
- Coordinated data taking periods ongoing (70 billion tracks collected)
- Very interesting observations of cosmics phenomena
- ✓ High school students strongly involved in the Project

Long Distance Correlations

- Possible candidate events observed
- ✓ Analysis still ongoing (cuts optimization and study of the multi-tracks events topology)
- ✓ Waiting for new statistics
 - new sites entering into their operational stage (2 of them testing new eco-friendly mixtures)
 - larger efficiency and duty cycle
 - new campaign measurements

THANK YOU FOR ATTENTION! ANY QUESTIONS?

Extreme Energy Events Science inside Schools