

The Jiangmen Undergound Neutrino Observatory

A.A A.A

Marco Grassi APC Paris

The Detector

Why JUNO

Reactor Neutrino Physics

Neutrinos Beyond Reactor

Supernova

 \star

Geoneutrinos * Solar Neutrinos

Project Status

The Detector at a Glance

a huge liquid scintillator detector...

JUNO within the Global Experimental Landscape

2 Key parameters:

Large & Precise

Largest photocathode density ever built: 78% coverage Largest light level ever detected: 1200 pe/MeV (Daya Bay 160 pe/MeV - Borexino 500 pe/MeV - KamLAND 250 pe/MeV)

Why JUNO?

Neutrino Mixing

(non-zero) Neutrino Mass Eigenstates ≠ Interaction Eigenstates ► Oscillation

Mixing described by the Pontecorvo-Maki-Nakagawa-Sakata Matrix

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{13} & \sin \theta_{13} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} & e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin \theta_{13} & e^{i\delta} & 0 & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{13} & \cos \theta_{13} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Atmospheric Reactor (L~1km) Solar

M. Grassi

Neutrino Mixing at JUNO

(non-zero) Neutrino Mass Eigenstates ≠ Interaction Eigenstates ► Oscillation

Experiments so far optimized to observe only one oscillation at a time

JUNO will see interference pattern resulting from both oscillations

 $\Delta m_{21}^2 / \Delta m_{31}^2 \sim 3\%$ > Energy Resolution

Powerful test of the 3-neutrino mixing model

Interference allows to determine neutrino mass ordering (Petcov&Piai 2002)

Nuclear Power Plants

Energy by breaking heavy nuclei Fission fragments are unstable Cascade of beta decays $\mathcal{M} \rightarrow \mathcal{P} + e^- + \overline{\mathcal{P}}_e$ $3 \text{ GW}_{\text{th}} \text{ reactor : } \sim 10^{20} \overline{v}_e \text{ / s}$

Oscillated Antineutrino Spectrum

 $P_{\bar{\nu}_{e}} \rightarrow \bar{\nu}_{\bar{e}} = 1 - \sin^{2} 2 \vartheta_{13} \cdot \sin^{2} \left(\cos^{2} \vartheta_{12} \cdot \sin^{2} \Delta_{31} + \sin^{2} \vartheta_{12} \cdot \sin^{2} \Delta_{32} \right)$ Fast - $\sin^{2} 2 \vartheta_{12} \cdot \cos^{4} \vartheta_{13} \cdot \sin^{2} \Delta_{21}$ Slow

Signal Events: Antineutrino Detection

Signal Events: Antineutrino Detection

Inverse Beta Decay (IBD) :

 $\overline{\mathcal{V}}_{e} + p \longrightarrow e^{+} + m$ Prompt $m + p \xrightarrow{\tau \sim 200 \, \mu s} D + \chi (2.2 \, \text{MeV})$ Delayed

 $E(\bar{\nu}_e) \sim K(e^+) + 1.8 \text{ MeV}$ Prompt energy is a good proxy for $\bar{\nu}_e$ energy

Background Overview

Two Main Backgrounds

Random energy depositions from natural radioactivity

Unstable isotopes generated by muon spallation on liquid scintillator molecules

Event Rate per Day

Selection	IBD efficiency	IBD	Geo- νs	Accidental	⁹ Li/ ⁸ He	Fast n	(lpha,n)
-	-	83	1.5	$\sim 5.7 \times 10^4$	84	-	-
Fiducial volume	91.8%	76	1.4		77	0.1	0.05
Energy cut	97.8%			410			
Time cut	99.1%	73	1.3		71		
Vertex cut	98.7%]		1.1			
Muon veto	83%	60	1.1	0.9	1.6		
Combined	73%	60			3.8		

Muon Veto

Top Tracker

OPERA plastic scintillator modules Three overlapping layers

Partial coverage due to available modules

- Reject ~50% muons
- Provide tagged muon sample to study background rejection

Water Cherenkov

20~30kt ultra-pure water

Water acting as moderator & pool instrumented to detect Cherenkov light

2000 20" PMTs located as in the picture

Maximize detection efficiency of Cherenkov light

Mass Ordering Determination

Fit data against both models

Several experimental caveats

- Energy Resolution
- Energy Linearity
- Spatial distribution of reactor cores

Mass Ordering Sensitivity

100k signal events (20kt x 36GW x 6 years) $\Delta \chi^2$: Fitting wrong model - Fitting correct one

---- Unconstrained (JUNO only) $\Delta \chi^2 \sim 10$

- Using external $\Delta m_{\mu\mu}$ (1.5% precision) from long baseline exps: $\Delta \chi^2 \sim 14$

What's Special About Mass Ordering at JUNO

Many complementary experiments Similar time scales but

- Different experimental techniques
- Different systematic uncertainties

JUNO only experiment exploiting disappearance in-vacuum oscillation

No dependence from θ_{23} or $\delta(CP)$

Very little dependence from matter effects

Chin.Phys. C40 (2016), 091001

- ---- JUNO sensitivity w/o matter effects
- JUNO sensitivity with matter effects

Sensitivity To Oscillation Parameters

Sensitivity To Oscillation Parameters

Solar Oscillation Parameters: a Redundant Measurement

JUNO: a stereo-calorimetric detector Two PMT systems looking at same event * 20-inch: main calorimetry * 3-inch: constrain energy systematics Allow redundant solar par. measurement Ensure accuracy!

Beyond Reactor Neutrino Physics

UNDERSTANDING OUR UNIVERSE: SUPERNOVA BURST NEUTRINOS

UNDERSTANDING OUR PLANET: GEONEUTRINOS

UNDERSTANDING THE SUN: SOLAR NEUTRINOS

Supernova Burst

99% of gravitational binding energy emitted as (anti)neutrinos

Process	Туре	Events $\langle E_v \rangle = 14 MeV$			
$\overline{v}_e + p \rightarrow e^+ + n$	CC	5.0×10 ³			
$v+p \rightarrow v+p$	NC	1.2×10 ³			
$v + e \rightarrow v + e$	ES	3.6×10 ²			
$v + {}^{12}C \rightarrow v + {}^{12}C^*$	NC	3.2×10 ²			
$v_e + {}^{12}C \rightarrow e^- + {}^{12}N$	CC	0.9×10 ²			
$\overline{v}_e + {}^{12}C \rightarrow e^+ + {}^{12}B$	CC	1.1×10 ²			
NB Other $\langle E_v \rangle$ values need to be considered to get complete picture.					

Multiple detection channels

Expected events in JUNO for a typical supernova distance of 10kpc

J.Phys. G43 (2016) no.3, 030401

M. Grassi

22

Supernova Neutrino - Detection Channels

Supernova at 10 kParsec

Challenges in Supernova Detection

The most difficult event to handle in JUNO's lifespan (if it will ever happen) Electronics over-designed only to handle the data rate of such an event

Both rate and energy need to be measured

Extreme **pile-up** condition Hard to disentangle multiple energy depositions

Profit from 10s of PMT waveforms sampled at 1GHz

Profit from two redundant PMT systems with different readout electronics

Geoneutrinos

Earth's total heat flow is well measured: 46±3 TW.

Need to investigate its source: primordial vs radioactive

- Composition of the Earth (chondritic meteorites that formed our planet)
- Chemical layering of mantle & dynamics of mantle convection
- Energy needed to drive plate tectonics

What

Detect \overline{v}_e from the ^{238}U and ^{232}Th

Challenge

Disentangle mantle contribution

Why Solar Neutrinos at JUNO

Sun fusion reactions: powerful source of electron neutrinos at O(1 MeV)

JUNO might detect neutrinos from ⁷Be and ⁸B chains

Investigate MSW effect: Transition between vacuum and matter dominated regimes

Constrain Solar Metallicity Problem: neutrinos as proxy for Sun composition

Challenges in Solar Neutrino Detection

Pros 20 kt detector Larger statistics than Borexino & SNO Aggressive fiducialization (external radioactivity)

⁷Be

Detection through elastic scattering

Prompt-delayed coincidence lost

Swallowing scintillator radioactivity

Rely on liquid scintillator purification

Challenges

- Shallower wrt to other solar exps
- Considerable cosmogenic bkg
- Rely on statistical subtraction &
 3-fold coincidence (n tagging)

Project Status

Prototypes

Acrylic bonding Steel Truss Structure Electronics Calibration Small detector (integration)

Liquid Scintillator

One of Daya Bay detector dedicated to JUNO liquid scintillator R&D

Purification **pilot plant** now operational at Daya Bay underground site

Two main goals: transparency & radiopurity

Ongoing tests

- Optimization of LS formulation (PPO concentration. Bis-MSB needed?)
- ²²²Rn Contamination
- Distillation (7000 liters/hour)
- Al₂O₃ purification
- Gas stripping
- Water extraction

23 m attenuation length reached!

Large Photomultipliers

15k MCP PMT (NNTV - China) 5k dynode PMT (Hamamatsu)

9000+ PMTs already delivered

Currently stored in warehouse close to experimental site

Being characterized by JUNO collaboration (heavy shift load)

Specifications (so far) meet our requirements

M. Grassi

Small Photomultipliers

25000 units from HZC Photonics Production rate: 2000/month Gain (at JUNO): 3 10⁶ QE x CE (at 420nm): 24% SPE Resolution: 35% Dark Rate at 1/4 PE: 1kHz Transit Time Spread: 5 ns

Calibration

Four complementary systems under development

Collaboration

More than 70 institutions from 17 countries, counting almost 600 scientists

Schedule

CONCLUSIONS

- JUNO is an unprecedented liquid scintillator detector (size & resolution)
 - 1200 pe/MeV required to reach 3% energy resolution at 1MeV
- High precision neutrino oscillation with reactor-v
 - SOLAR SECTOR : ≤1% precision in solar terms
 - * ATMOSPHERIC SECTOR : mass ordering through oscillation interference insensitive to matter effects, $\delta(CP)$ and θ_{23}
- * NON-REACTOR v : leading capabilities in Supernova, Geoneutrinos, Solar v
- Collaboration est. in 2014 & project fully funded > data taking in 2021