

Imre Bartos University of Florida

Earth

pace

"all-sky" observatories follow-up observatories

Localization and search for counterpart

Information in Gravitational Waves

Primary mass m_1	$1.36-1.60 \ M_{\odot}$
Secondary mass m_2	$1.17 - 1.36 M_{\odot}$
Chirp mass \mathcal{M}	$1.188^{+0.004}_{-0.002} M_{\odot}$
Mass ratio m_2/m_1	0.7–1.0
Total mass m_{tot}	$2.74^{+0.04}_{-0.01}{M}_{\odot}$
Radiated energy $E_{\rm rad}$	$> 0.025 M_{\odot} c^2$
Luminosity distance $D_{\rm L}$	40^{+8}_{-14} Mpc
Viewing angle Θ	$\leq 55^{\circ}$
Using NGC 4993 location	$\leq 28^{\circ}$

$$R = 1540^{+3200}_{-1220} \text{ Gpc}^{-3} \text{ yr}^{-1}$$

Low-spin priors $(|\chi| \le 0.05)$

- More common than we expected
- Consistent with galactic BNS observations
- Tidal effects are not taken into account
- Neutron star maximum mass: ~2.2 Msun

Identification of optical counterpart

- Gravitational waves \rightarrow 30 deg localization uncertainty
- Swope Telescope counterpart within 11 hours.
- Host galaxy 40 Mpc.
- Light curve consistent with kilonova model.
- 0.01-0.05 M_{\odot} ejected from merger.

Information from GRB & afterglow

- Weak GRB --- orders of magnitude below weakest detected.
- Delayed afterglow (9/15 days for X-ray/radio) --- off axis?
- Afterglow brightness grows until ~200 days.
 - Simple (on-axis, "top-hat") models ruled out.

Afterglow

Weak y-rays

Structured jet

sGRB

X-ray/Radio)

Macronova (UVOIR)

• Outflow is structured likely due to interaction with kilonova ejecta.

(e.g. Lazzati+2017, Margutti+ 2018) (e.g. Gottlieb 2017, Mooley 2018)

sGR

High-energy neutrino emission from neutron star mergers

- Choked jet by ejecta is possible for GW170817.
 (e.g., cocoon model, Mooley+ Nature 2018).
 - → Neutrinos produced inside the ejecta (transejecta neutrinos) can escape while photons are absorbed.
- Could help understand processes inside ejecta and distinguish emission models:
 - Choked jet
 - Off-axis observation

High-energy emission (neutrinos)

Rationale:

- <u>Verv nearby GRB</u> potentially strong emission.
- <u>GRB model unclear</u> (e.g. structured vs cocoon, on-axis / off-axis) neutrinos may help differentiate.
- <u>Interaction between GRB and kilonova eiecta</u> --- interesting site for neutrino production.

Multi-messenger search:

- Rapid reaction is critical joint event can immediately help localization.
- Required close collaboration of multiple observatories logistics, data sharing, etc.
- Participating observatories: ANTARES, IceCube, Pierre Auger.

Pierre Auger

Search for high-energy neutrinos

- Search within <u>1000 s</u> and <u>2-week</u> time windows (model motivated). •
- Complementary sensitivity from the three detectors. ٠
- No significant coincident detection. ٠
- On-axis emission could have produced detectable emission in some models. ٠

IceCube Fang & Metzger 30 days Fang & Metzger 3 days 14 day time-window 10^{-3} 10^{-3} 10^{-3} $10^6 \quad 10^7$ 10^{8} 10^{9} 10^{10} 10^{11} 10^{5} 10^{3} 10^{4} E/GeV ANTARES, IceCube, Auger, LIGO, Virgo 2017

 10^{0}

 10^{-1}

 10^{-2}

Evolution

Bartos, Brady, Marka 2013

	LIGO		Virgo		KAGRA	
	BNS	BBH	BNS	BBH	BNS	BBH
	range/Mpc	range/Mpc	range/Mpc	range/Mpc	range/Mpc	range/Mpc
Early	40-80	415-775	20-65	220-615	8-25	80-250
Mid	80-120	775-1110	65 - 85	615 - 790	25 - 40	250 - 405
Late	120 - 170	1110-1490	65-115	610-1030	40 - 140	405 - 1270
Design	190	1640	125	1130	140	1270

- Improving detectors
- Increasing observation time
- More detectors \rightarrow better localization

KAGRA, LIGO, Virgo 2017

Credit: LIGO-Virgo/Frank Elavsky/Northwestern University

Summary

GW170817 / GRB170817

- Successful multi-messenger campaign.
- Several surprises (GRB structure, off axis, ...).
- Still observable afterglow.
- Many unknowns. analysis still ongoing.

Gravitational-wave observations:

- ✓ O3 will commence early 2019
- ✓ Improved sensitivity
- ✓ Should expect multiple BNS mergers!

Road ahead:

- ✓ Discoveries at rates challenging to follow-up/analyze.
- ✓ Will need to interpret an ensemble of observations
- ✓ Neutrino observations will help with:
 - quick identification of source direction
 - Interpretation of outflow properties.

