

I 0 years of the Fermi Gamma-Ray Space Telescope

Raffaella Bonino

University and INFN Torino <u>rbonino@to.infn.it</u>

on behalf of the Fermi-LAT Collaboration

The Fermi observatory

Large Area Telescope (LAT):

- 20 MeV to more than 300 GeV
- observes 20% of the sky at any instant
- entire sky every 3 hrs

Gamma-ray bace Telescope

absolute timing ~ 300 ns

Gamma-ray Burst Monitor (GBM):

- 8 keV to 40 MeV
- observes entire unocculted sky
- absolute timing ~ 2µs
- compute burst location to allow re-orienting Fermi

- Launch: June 11 2008, NASA
- **Orbit**: circular, 565 km altitude, 25.6° inclination

- In March 16, 2018: one of the two solar panels of Fermi got stuck, as a consequence the observatory went into safe hold → instruments powered off and science data taking stopped
- On April 3, 2018: both GBM and LAT have been returned to operational status and are actively collecting science data.
 - GBM has immediately returned to full functionality.
 - LAT started getting back to normal operation temperature (5 days needed to complete the recovery)
- Since April 8, 2018: the LAT operates normally again, a new observing strategy is under study
- **Ongoing investigation** to understand the problem on the engineering side

Fermi sky in 30 hours

Fermi sky in 60 hours

Fermi sky in 5 days

Fermi sky in 1280 days

Point Sources

ermi

Gamma-ray Space Telescope

5000+ γ -ray sources: several source classes, including AGN, PSRs, SNR and more

Gamma rays from high-energy **cosmic rays interacting** with dust, gas and radiation fields in the Galaxy

Unresolved emission from extra-Galactic sources, possibly other contributions

Some of the Fermi-LAT HIGHLIGHTS HIGHLICHL2

- One possible approach for finding and studying new source classes
- Systematic analysis of the sky exercised the LAT analysis tools (e.g. definition of event classes and IRFs) and tested assumptions of the analysis (e.g. effects of residual Earth limb emission)
- Good initial guess for detailed study of a (newer and longer) data set

- **OFGL** (3 months)
- IFGL (II months)
- 2FGL (2 years)
- **3FGL** (4 years)
- coming soon:
 - **4FGL** (8 years) with 5000+ sources

- Fermi bubbles (1) Large lobes of hardspectrum emission extending +/-60° above and below the Galactic plane in the inner Galaxy (Su et al. 2010)
- GC GeV excess A large region around the Galactic center is brighter than expected in GeV gamma rays (Vitale et al. 2009)
- Behind-the-limb **solar flares (2)** (Pesce-Rollins+ 2015)
- Variable pulsars Isolated PSR J2021+4026 (Allafort et al. 2016), millisecond pulsar in a binary system PSR J1227-4853 (Johnson et al. 2015)
- Crab flares (3) The Crab nebula, a standard calibration source, is generally 'boiling' and occasionally in outburst (Tavani et al. 2010)

New sources classes

Galactic novae – White dwarf star accreting matter from a companion, detonating, started with V407 Cygni (Abdo et al. 2010), now many

- Shocks in the expanding nova envelope produce γ rays that appear 1-3 weeks after onset of optical outburst
- Fermi ToO in response to optical discovery resulted in ~8 new detections
- Synergy with radio observations that reveal shock sites

High-mass binaries – Started with PSR B1259-63 (Abdo et al. 2010), gets active at periastron Star-forming galaxies – Started with M82 and NGC 253 (Abdo et al. 2010), now several Globular clusters – Started with Abdo et al. (2009), 15 sources in 3FGL

Misaligned AGN – blazar jet not pointed at the Earth; CenA nearby prototype (Abdo et al. 2010)

Disk Integral Flux(E>100MeV) = (1.97 ± 0.03) 10⁻⁷ ph cm⁻²s⁻¹

Sun IC Integral Flux (E>100MeV) = $(7.39\pm0.11)10^{-7}$ ph cm⁻²s⁻¹sr⁻¹

Solar disk modulation

Gamme-ray Doace Telescope

Trend of the relative variation of the disk integral flux (>100MeV) w.r.t. the overall disk integral flux evaluated over the entire ≈ 10 years time interval. Superimposed the mean sunspot number trend.

Solar activity source: WDC-SILSO, Royal Observatory of Belgium, Brussels

CRs e⁺e⁻ (CRE) spectrum

Fermi-LAT CRE spectrum well fitted by a broken power law:

Hint of a break at 53±8 GeV (significance ~ 4σ)

sade Telescope

Best fit spectral indices Γ_1 =-3.21±0.02 below and Γ_2 =-3.07±0.02 above the break

Exponential cutoff lower than 1.8 TeV excluded at 95% CL

- Slightly harder than AMS- 02 spectrum (spectral indices different at 1.7 σ level)
- Syst. uncertainty on: energy scale ~ 2% + energy rec. 0% @ 10 GeV → 5% @ 1 TeV 28

Comparison with recent results

icace Telescope

DAMPE:

- Cal. depth 32 X₀, energy res. ~ 1.2%, acceptance: ~ 0.2-0.3 m² sr
- **Froken power law (** $\Gamma_1 \approx -3.1 \Gamma_2 \approx -3.9$), $E_{break} \approx 0.9$ TeV
 - ☑ Consistent with Fermi, except the TeV break
 - Overall higher than AMS-02

CALET:

- Cal. depth 30 X₀, energy res. ~ 2%, acceptance: ~
 - 0.06 m² sr
- Single power law above 30 GeV (Γ =-3.152±0.016)

- Differences might be due in part to the **uncertainty in the absolute energy scale**.
- With increased statistics and improved understanding of detectors' performances, more consistent measurements may be achieved in the near future.

STUDIES STODIES

Synergy with other instruments

Scale Telescope

Radio: pulsations, synchrotron emission, gas / dust maps, high resolution imaging of host galaxies...

Microwave: diffuse maps & morphology, host galaxy characteristics...

LAT Source Localization better than 0.1°

Great for followups

IR: gas/ dust maps, host galaxy characteristics

Energy

TeV: High-energy spectral breaks, supernovae morphology...

X-ray: GRB afterglows, Galactic source morphology & pulsar association...

Optical: GRB afterglows, AGN/ GRB redshifts...

Transient Searches

s ermi Gamma-cay Scace Telescope

Gravitational waves

- 5 BH- BH: GW150914, LVT151012, GW151226, GW170104, GW170814;
- INS-NS: G₩170817;

ace Telescope

- BH-BH mergers are not expected to produce EM *radiation*.
- Solution
 Solution
 Solution
 Solution

General strategy for Fermi-LAT searches at high- energy:

- Automated full sky searches of transients
- Specific searches in the LIGO contours
- Specific followups of detected counterparts
- Pipelines to quick alert the community

- GW170817 detected on August 17, 2017 by the Advanced LIGO and Virgo observatories.
- 1st signal due to the merger of two NS

LIGHT THE CAVE

- Only 1.7 seconds after the GW detection, Fermi-GBM and INTEGRAL detected a short GRB 170817A
- For decades astronomers suspected that sGRB were produced by the merger of two NS or a NS and a BH
- The combination of GW170817 and GRB 170817A provides the 1st direct evidence that colliding NS can produce sGRB.

ermi LAT observation of GWI708I7

The LAT and the GBM do not collect data when in the SAA

oace Telescope

- SAA definition for the LAT is slightly larger (14%) than the GBM one
- At the time of the GW event the LAT was in the SAA
- We observe the entire region between t_{GW}+1153 – t_{GW}+2017
- No electromagnetic counterpart above > 100 MeV on timescales of minutes/hours/days after t_{GW}
- Upper bound (0.1-1 GeV): F < 4.5x10⁻¹⁰ erg cm⁻² s⁻¹
 - Liso < 9.3x10⁴³ erg s⁻¹ → strong constraint (5 orders of magnitude less luminous than GRB090510)
- Prospects for future LAT detections: assuming a sGRB+GW rate of 1-2/yr → LAT has a P~5-10% to detect at least 1 event in 1 year

- So far only the Sun and SN1987A have been identified as astrophysical ν sources
- Mechanisms and environments responsible for the high-energy cosmic neutrinos are still to be identified
- Many potential astrophysical source candidates exist:
 - ✓ Heavy black holes $(M_{BH} \sim 10^{8-9} M_{SUN}) \rightarrow AGN$
 - Strong magnetic fields (B ~ 10^{15} G) \rightarrow magnetars
 - ✓ Bright explosions (L ~ 10^{52} erg/s) → GRB
 - ✓ Big gravitationally bounded objects → Galaxy clusters/groups
- Section AGN blazars in particular are the most promising candidates:
 - Powerful relativistic jets could accelerate particles up to the highest energies
 - Such particles, interacting with radiation and matter, would produce pions that decay into photons and ν

The coincident observation of v with electromagnetic flares would enable the identification of the sources

Searching strategies

GeV, 6years); 2WHSP (most complete list of HSP)

- \square no significant evidence for \vee signal in none of the catalogs
- results compatible with bkg fluctuations.

Searches for time-dependent v sources

- IceCube real-time alert system targets v of likely astrophysical origin
- On Sept. 22, 2017: first detection of gamma-ray excess positionally and temporally consistent wit neutrino!
 Fermi-LAT detection of increased gamma-ray activi TXS 0506+056, located inside the lceCube-170922 error region.

Kocevski (NASA/MSFC) on behalf of the Fermi-LAT collaboration on 28 Sep 2017; 10:10 UT

Fermi-LAT detection of increased gamma-ray activity of TXS 0506+056, located inside the IceCube-170922A error region.

ATel #10791; Yasuyuki T. Tanaka (Hiroshima University), Sara Buson (NASA/GSFC), Daniel Kocevski (NASA/MSFC) on behalf of the Fermi-LAT collaboration on 28 Sep 2017; 10:10 UT

- The GCN notice triggered follow-up by ground and space-based instruments to help identifying a possible astrophysical source for the candidate V:
 - Fermi-LAT: detected an increased γ-ray activity of the known γray source TXS 0506+056 (3FGL J0509.4+0541) inside the IC error region, redshift unknown
 - Solution \mathbf{AGILE} : confirmed the enhanced γ -ray activity
 - IACTS: MAGIC (detection of VHE γ-rays from direction consistent with ν event), HAWC and HESS (upper limits)
 - **Radio:** detection of flux variability
 - Swift-XRT (detection), INTEGRAL (upper limits)
 - Optical: ASAS-SN (enhanced flux), Liverpool telescope (optical spectrum)
- These observations suggest that blazars may be sources of highenergy v...more details coming soon, STAY TUNED!

🧠 ermi

Conclusions

- The Fermi mission is celebrating its 10th anniversary and continue to work well
- Public data and public analysis tools maximize the scientific return
- Huge advance for high-energy astronomy (exceeding expectations!)
 - current performances are already impressive, but they can be further improved with a new event selection...stay tuned!
- The mission is far from over but it is already clear that Fermi will have a lasting legacy

Some of the **highlights**:

- catalogs
- surprises
- new source classes
- multi-messenger
 - Fermi is always scanning the sky, and new multi-messenger opportunities are helping to maintain the scientific relevance