Trigger downscaling checks

Dario Soldi

Italo's plots (2016 data taking):

Checks

- Checks:
 - distance between two different primitives from CHOD detector.
 - $\pi^+\pi^0$ events selected using only LKr, checks for out-of-time peaks.
 - Total number of 3π and $\pi^+\pi^0$ from:
 - Mask0
 - MAsk5
 - Control
 - Branching ratio of Kµ2 and K $\pi^{+}\pi^{0}$ normalized to K3 π

Primitive profile run 6610 – burst 40

Data from 2016

- 30 golden run used:
- 6497, 6498, 6501, 6579, 6581, 6610, 6611, 6612, 6613, 6632, 6633, 6634, 6635, 6636, 6637, 6639, 6641, 6642, 6653, 6654, 6656, 6658, 6659, 6660, 6661, 6662, 6663, 6664, 6678, 6680.
- Trigger used:
 - Mask0: RICH x Q1 x !MUV3 (x KTAG) / 200
 - Mask5: RICH x Qx (x CEDAR x STRAW x L1) / 50
 - Control Trigger / 400

Check $\pi^+\pi^0$

- LKr π^0 reconstruction, imposing π^0 mass and looking for derived z in the fiducal volume.
- No cut in time between photons => to probe out of time physics.
- MUV3 in Veto (no candidates at all)
- LAV in Veto (no candidates at all)
- IRC in Veto (no candidates at all)
- P_{π+} < 40 GeV

Check $\pi^+\pi^0$

Total number of K decays

$k2\pi$ selection

- 1 and only one good, positive track in the spectrometer
- 1 cluster in CHOD in time (6 ns) with the trigger associated with the track.
- 1 KTAG in time (2.5 ns) with > 5 sectors
- 1 good GTK in time (1.5 ns)
- cda GTK/Straw < 2.5 cm
- Zvtx in fiducial volume
- 0.2 < E/p < 0.9
- Not MUV3
- Not LAV
- Not IRC/SAC
- 130 < π0 mass < 140 GeV
- Reconstruction of π 0 with LKr, 125 < mass < 145
- 15 GeV < P < 50 GeV

Acceptance: 0.05

Kµ2 selection

- 1 and only one good, positive track in the spectrometer
- 1 cluster in CHOD in time (6 ns) with the trigger associated with the track.
- 1 KTAG in time (2.5 ns) with > 5 sectors
- 1 good GTK in time (1.5 ns)
- cda GTK/Straw < 2.5 cm

Acceptance: 0.21

- Zvtx in fiducial volume
- E/p < 0.2
- 1 and only 1 candidate in MUV3 associated with track
- Not LAV
- Not IRC
- -0.002 < Missing mass squared < 0.002 GeV2
- 15 GeV < P < 50 GeV

$k3\pi$ selection

- One good, positive vertex with 3 Tracks.
- 3 tracks in the 4 chambers of the spectrometer
- 3 cluster in CHOD in time (6 ns) with the trigger associated with the track.
- 1 KTAG in time (2.5 ns) with > 5 sectors
- 1 good GTK in time (1.5 ns)
- Distance between vertex and GTK projection < 5 mm
- Zvtx in fiducial volume
- Not MUV3
- Not LAV
- Not IRC/SAC
- 490< Invariant mass < 497 GeV

Acceptance: 0.053

K3π

N0 control = 60730 ± 246 N0 mask0 = 120980 ± 348 N0 mask5 = 441951 ± 665

L0 Mask0 Efficiency 0.9964 ± 0.0003 L0 Mask5 Efficiency 0.938 ± 0.001 L0 Cntrl Efficiency 0.9986 ± 0.0001

L1 Mask0 Efficiency 0.9995 ± 0.0004 L1 Mask5 Efficiency 0.968 ± 0.001

N = N0 * Downscaling * (1 / efficiencyL0) * 1/(efficiencyL1) Statistical error: $\sqrt{[Downscaling^2 * (1/efficiencyL0)^2 * (1/efficiencyL1)^2 * N0]}$

Trigger	Value (only statistical)	Normalized to mask 0
Mask0	24293780 ± 69845	1
Mask5	24340380 ± 36613	0.998
Control	24326988 ± 98716	0.998

NK2 π = N0 * Downscaling * (1 / efficiencyL0) * 1/(efficiencyL1) Statistical error: $\sqrt{[Downscaling^2 * (1/efficiencyL0)^2 * (1/efficiencyL1)^2 * N0]}$

Trigger	Value (only statistical)	Normalized to mask 0
Mask0	70672543 ± 119163	1
Control	71712339 ± 169621	0.986

Branching ratios

Kµ2 Branching ratio

• Kµ2: N0 Control 914313668 ± 605663.3

BR= (NKµ2 * 1/AcceptanceKµ2) / (NKnorm * 1/AcceptanceKnorm)

Error on the acceptance not considered, few montecarlo events analyzed. It has to be improved.

Normalized to π+π0			
PDGValue:	3.074988 ± 0.01		
Control Value:	3.035652 ± 0.03		
Mask0 Value:	3.080316 ± 0.02		

Normalized to $K3\pi$

PDG Value:	11.390	± 0.053
Control Value:	9.418	± 0.154
Mask0 Value:	9.430	± 0.111
Mask5 Value:	9.412	± 0.062

 $K3\pi$ normalization not compatible with PDG

$K\pi 2$ Branching ratio

PDG Value:3.704 pm 0.021Control Value:3.102 pm 0.014Mask0 Value:3.061 pm 0.009

 $K3\pi$ normalization not compatible with PDG, at the same level of Kµ2.

Missing K 2π or K μ 2 with respect to K 3π . Acceptance badly measured? Random veto due to LKr? Same effect seems affecting both K μ 2 and K 2π .

All the errors here reported are statistical. What about considering the fact that the dowscaling is truncated?

we can consider

 $\sigma_{\text{Downscaling}}$ = Nbursts * (Downscaling / $\sqrt{12}$) / Nevents.

The errors increase, making all the measurements compatible.

Changing conditions

• Enlarging missing mass cut in K2π selection.

Trigger	Value (only statistical)	Normalized to mask 0
Mask0	94576790 ± 119163	1
Control	95937189 ± 137829	0.986

Changing conditions

Veto for MIPs in K3π

Trigger	Value (only statistical)	Normalized to mask 0
Mask0	2691712 ± 23257	1
Mask5	2711461 ± 12229	0.993
Control	2747302 ± 33175	0.98

Changing conditions

******** K2 Pi Branchina Ratio ********** Theoretical Value: 3.704301 pm 0.021433 Control Value: 4.651120 pm 0.427683 Mask0 Value: 4.679860 pm 0.307876 ********* K Mu2 Branching Ratio ********* Normalized to PiPi0 Theoretical Value: 3.074988 pm 0.013037 Control Value: 3.353767 pm 0.019882 MaskØ Value: 3.402008 pm 0.015038 Normalized to 3Pi Theoretical Value: 11.390681 pm 0.052810 Control Value: 15.598771 pm 3.900448 Mask0 Value: 15.920920 pm 2.852722 Mask5 Value: 15.804956 pm 1.490137

Background has to be understood.

Conclusions

- Evidences of refiring in NA48-CHOD. There are clear evidences both from Italo's plots and from the CHOD-primitive time distribution.
- Looking at out of time events using only calorimeter: about 2% of K2π appear out of time of 12.8 ns. Not compatible with Italo's events. What are they? Am I doing something wrong?
- Number of events for different masks are compatible. Big downscaling makes the numbers very sensitive to any perturbation: if there is a bias, the bias is multiplied of a factor 400 for the Control trigger.
- Branching ratio of Kµ2 compatible with PDG if normalized with K2 π using the initial cut condition.
- Enlarging the π 0 window and changing the acceptance, not anymore compatible.
- Background has to be understood.
- Normalization with $K3\pi$ to be understood.
- The refiring effect seems not affecting the measurements at level of some %.

Suggestion

- The control trigger can be used to study the trigger efficiency, but for the normalization on K2π is much better to take events from trigger mask0:
 - RICH x Q1 x !MUV3 / 200
- Advantages:
 - all of its components are part of πvv mask.
 - L1 KTAG present both in πvv and mask0.
 - The RICH gives the time to the event, has for πvv .
 - Lower downscaling, more statistics
- Disadvantages:
 - They are not part of filtered data