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FIG. 9. Di↵erential cross sections for ⇡+⇡� (black circles) and ⇡+⇡+ + c.c. (blue squares) as a function of m⇡⇡ for the
indicated z bins. The error boxes represent the systematic uncertainties. Top panel: linear representation of cross sections:
bottom panel: logarithmic representation. The vertical green dashed line corresponds to the kinematic limit. An overall 1.6%
scale uncertainty is not shown.

 e+e− cross section for (ππ) in same hemisphere

e+ e− → (h1h2) X 5

FIG. 2: Definition of the azimuthal angles φ1 and φ2 of the
two hadrons, between the scattering plane and their transverse
momenta Phi⊥ around the thrust axis n̂. The angle θ is defined
as the angle between the lepton axis and the thrust axis.

momentum of the quark-antiquark pair is known. The
quark directions are, however, not accessible to a direct
measurement and are thus approximated by the thrust
axis. The thrust axis n̂ maximizes the event shape vari-
able thrust:

T
max
=

∑

h |PCMS
h

· n̂|
∑

h |PCMS
h |

, (3)

where the sum extends over all detected particles. The
thrust value varies between 0.5 for spherical events and
1 for tracks aligned with the thrust axis of an event. The
thrust axis is a good approximation to the original quark-
antiquark axis as described in Section III A. The first
method of accessing the Collins asymmetry, M12 is based
on measuring a cos(φ1 + φ2) modulation of hadron pairs
(N(φ1 + φ2)) on top of the flat distribution due to the
unpolarized part of the fragmentation function. The un-
polarized part is given by the average bin content ⟨N12⟩.
The normalized distribution is then defined as

R12 :=
N(φ1 + φ2)

⟨N12⟩
. (4)

The corresponding cross section is differential in both az-
imuthal angles φ1,φ2 and fractional energies z1,z2 and
thus reads [25]:

dσ(e+e− → h1h2X)

dΩdz1dz2dφ1dφ2
=

∑

q,q̄
3α2

Q2

e2
q

4 z2
1z

2
2

{

(1 + cos2 θ)Dq,[0]
1 (z1)D

q,[0]
1 (z2)

+ sin2 θ cos(φ1 + φ2)H
⊥,[1],q
1 (z1)H

⊥,[1],q
1 (z2)

}

, (5)

where the summation runs over all quark flavors acces-
sible at the center-of-mass energy. Antiquark fragmen-
tation is denoted by a bar over the corresponding quark

FIG. 3: Definition of the azimuthal angle φ0 formed between
the planes defined by the lepton momenta and that of one
hadron and the second hadron’s transverse momentum P ′

h1⊥

relative to the first hadron.

fragmentation function; the charge-conjugate term has
been omitted. The fragmentation functions do not ap-
pear in the cross section directly but as the zeroth ([0])
or first ([1]) moments in the absolute value of the corre-
sponding transverse momenta [26]:

F [n](z) =

∫

d|kT |2
[

|kT |
M

]n

F (z,k2
T ) . (6)

In this equation the transverse hadron momentum
has been rewritten in terms of the intrinsic transverse
momentum of the process: Ph⊥ = zkT . The mass M is
usually set to be the mass of the detected hadron, in the
analysis presented here M will be the pion mass.

A second way of calculating the azimuthal asymme-
tries, method M0, integrates over all thrust axis direc-
tions leaving only one azimuthal angle. This angle is de-
fined as the angle between the planes spanned by one
hadron momentum and the lepton momenta, and the
transverse momentum of the second hadron with respect
to the first hadron momentum. This angle in the opposite
jet hemisphere is displayed in Fig. 3, and is calculated as

φ0 = sgn [Ph2 · {(ẑ × Ph2) × (Ph2 × Ph1)}]

× arccos

(

ẑ × Ph2

|ẑ × Ph2|
·

Ph2 × Ph1

|Ph2 × Ph1|

)

. (7)

The corresponding normalized distribution R0, which is
defined as

R0 :=
N(2φ0)

⟨N0⟩
, (8)

contains a cos(2φ0) modulation. The differential cross
section depends on fractional energies z1, z2 of the two
hadrons, on the angle φ0 and the transverse momentum
QT = |qT | of the virtual photon from the e+e− annihila-
tion process in the two hadron center-of-mass system. At

thrust
h1

“thrust-axis” frame

R. Seidl et al. (BELLE) 
P.R. D96 (17) 032005

d�0

dz dMh

h2

π+π+
π+π−
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DiFF(z, ⇠, |kT |, |RT |, k̂T · R̂T ) =
1

⇡

X

n

cosn(�k � �R)

1 + �n0
DiFF[n](z, ⇠, |kT |, |RT |)

|RT |H^
1 (z,M2

h) = z
2

Z
dkT

Z
d⇠

h
H

^ [0]
1 + |kT |H? [1]

1

i

this result in SIDIS cannot be reproduced from e+e−

Boer, Jakob, Radici, P.R.D67 (03) 094003

Bacchetta & Radici,  
P.R.D69 (04) 074026

z = z1 + z2

⇠ =
z1
z

3

FIG. 1. The dihadron fragmentation coordinate system,
where the ẑ axis is taken along the total 3-momentum of the
two hadrons, P . The components of 3-momenta perpendicu-
lar to ẑ axis are denoted with a subscript T .

four vectors to the quark momentum, zi = P
+
i /k

+. The
following light-cone momentum fractions are used in the
definitions of the DiFFs

z = z1 + z2, (3)

⇠ =
z1

z
= 1� z2

z
. (4)

The two-hadron fragmentation of a quark is described
by a quark-quark correlator [9, 11, 13, 38]

�ij(k;Ph, R) (5)

=
X

X

Z
d
4
⇣e

ik·⇣h0| i(⇣)|PhR,XihPhR,X| ̄j(0)|0i,

which, for the case of unpolarized hadron pair and at
the leading twist approximation, is parametrized via four
DiFFs

1

32z

Z
dk

��(k,Ph, R)|k+=P+
h /z ⌘ �(z, ⇠,kT ,RT ) (6)

=
1

4⇡

1

4

(
D1/n+ �G

?
1

✏µ⌫⇢��
µ
n
⌫
+k

⇢
TR

�
T

M
2
h

�5

+H
^
1

�µ⌫R
µ
Tn

⌫
+

Mh
+H

?
1

�µ⌫k
µ
Tn

⌫
+

Mh

)
,

where D1 is the unpolarized DiFF, G?
1 is the helicity de-

pendent DiFF, H^
1 is the IFF, and H

?
1 is the analogue

of the Collins function for the dihadron case. The light-
like vectors n� and n+ are defined as for any 4-vector
a, namely a

± = a · n⌥, and n+n� = 1, n
2
+ = n

2
� =

0. All four DiFFs are functions of z, ⇠, |kT |, |RT |, and
kT · RT = |kT ||RT | cos('k � 'R), where 'R and 'k

denote the azimuthal angles of the vectors RT and kT .
Thus, the DiFFs only depend on the cosine of the di↵er-
ence of the azimuthal angles 'k �'R, that we denote as
'KR. The DiFFs can be further expanded in an infinite
series of Fourier moments with respect to angle 'KR, as
done in Ref. [33] (see also Ref. [39] for an alternative ex-
pansion). It is clear, that all the sine terms vanish, as
the DiFFs are even functions of 'KR.

For D1 we have

FIG. 2. The kinematics of e+e� annihilation.

D1(z, ⇠,k
2
T ,R

2
T , cos('KR)) (7)

=
1

⇡

1X

n=0

cos(n · 'KR)

1 + �0,n
D

[n]
1 (z, ⇠, |kT |, |RT |),

and similarly for the other DiFFs.
The invariant mass of the hadron pair Mh is used to

replace the magnitude of RT

R
2
T = ⇠(1� ⇠)M2

h �M
2
1 (1� ⇠)�M

2
2 ⇠. (8)

These Fourier decompositions will prove valuable when
examining the azimuthal dependence of various structure
functions of the e+e� cross section which we re-derive in
the next section.

III. THE e+e� CROSS SECTION

In this section we re-derive the e+e� ! h1h2+h̄1h̄2+X

cross section at the leading twist approximation, follow-
ing the framework set out in the original work of Boer
et al. [8, 13, 40]. First, we briefly lay out the kinematics
in the next subsection, followed by the evaluation of the
cross section itself in the subsequent subsection.

A. Kinematics

A schematic depiction of the kinematic setup is shown
in Fig. 2. Here, the electron with momentum l annihi-
lates with a positron of momentum l

0, creating a quark-
antiquark pair. The time like momentum of the interme-
diate boson in this hard process is denoted as q = l + l

0

and we define q
2 = Q

2. In this work we use Q as the
hard scale and will ignore all the contributions of order
1/Q. The quark and antiquark hadronize, producing two
back-to-back jets. We choose a hadron pair h1, h2 with
momenta P1, P2 and masses M1,M2 from one of the jets.
From the other jet, we choose the second hadron pair
h̄1, h̄2, with momenta P̄1, P̄2 and masses M̄1, M̄2. Here
again we define the total and relative transverse momenta
for each pair, as done in Eqs. (1,2), and denote the cor-
responding momenta for the h̄1, h̄2 pair as P̄h and R̄. In
the ”leading hadron approximation”, where we assume
that a significant fraction of the energy in each jet is car-
ried by the two pairs, we can write Ph · P̄h ⇠ Q

2. Then

G1
!!z ,Mh

2"#! d$! d%R! dkTkT•RT
!G1

!!z ,$ ,kT
2 ,RT

2 ,kT•RT", !1"

where RT is the transverse part of the relative momentum
between the two hadrons and kT is the quark transverse mo-
mentum !see Sec. II for explicit definitions of the above
quantities". This function is related !but not identical" to lon-
gitudinal jet handedness and its resulting asymmetry will be
discussed in detail below !see Sec. V".
The asymmetry involving the transverse momentum inte-

grated chiral-odd IFF H1
" has already been studied in a dif-

ferent !less common" notation in a paper by Artru and Col-
lins &9'. It is the asymmetry of present-day experimental
interest regarding transversity. The extraction of H1

" from the
process e"e#→(h1h2)( h̄1h̄2)X is the goal of a group &10'
that will analyze the off-resonance data from the BELLE
experiment at KEK. In the present article, we provide for a
procedure of integrating and properly weighting the fully
differential cross section to single out the relevant asymme-
try. The extracted IFF will be of use to several ongoing or
starting experiments aiming to measure transversity in the
processes ep↑→(h1h2)X !HERMES, COMPASS" and pp↑

→(h1h2)X !RHIC &10'".
However, the asymmetry involving G1

! also seems of ex-
perimental interest. It can be viewed as the chiral-even coun-
terpart of the Artru-Collins asymmetry. An analogous asym-
metry involving chiral-even fragmentation functions does
not emerge when only one hadron is detected in each jet; this
asymmetry is thus particular to the multi-hadron fragmenta-
tion case. But it can also be viewed as an asymmetry arising
from a correlation between longitudinal jet handedness func-
tions. As such it is relevant for single spin asymmetries with
longitudinally polarized protons, ep!→(h1h2)X and pp!
→(h1h2)X , which are proportional to the well-known quark
helicity distribution function g1 &cf., e.g., Eq. !31" of Ref.
&3''. Since g1 is known to considerable accuracy, one can
extract G1

! from ep!→(h1h2)X and actually predict our lon-
gitudinal jet handedness correlation in e"e#

→(h1h2)( h̄1h̄2)X , i.e. the expression given below in Eq.
!38". Any experimental deviation may be related to a CP-
violating effect of the QCD vacuum &11'.
The function G1

! is also relevant for the studies of IFFs in
the processes ep↑→(h1h2)X and pp↑→(h1h2)X . There,
next to the asymmetry proportional to the transversity func-
tion, another G1

! dependent asymmetry &7' occurs, which is
proportional to the transverse momentum dependent distribu-
tion function g1T &12'. This function !extrapolated to x$0)
gives information on violations of the Burkhardt-Cottingham
sum rule. Apart from the intrinsic interest in such an asym-
metry, it also shows the need for appropriate weight func-
tions to separate the asymmetry proportional to g1TG1

! from
the asymmetries proportional to h1H1

" and h1H1
! !where h1

denotes the transversity function".
The other results presented below, i.e. the other terms

arising in the fully differential e"e# cross section, may also

be of interest in the future and the notation used here hope-
fully will facilitate communication between different experi-
mental groups planning or performing two-hadron IFF-
related studies for different processes.
The paper is organized as follows. In Sec. II we first dis-

cuss the kinematics of the process e"e#→(h1h2)( h̄1h̄2)X .
In Sec. III we present the cross section in terms of the inter-
ference fragmentation functions. Next, we investigate exten-
sively the Artru-Collins azimuthal asymmetry !Sec. IV" and
the newly found longitudinal jet handedness asymmetry
!Sec. V". During the discussion of these two asymmetries in
e"e#→(h1h2)( h̄1h̄2)X we also remark on corresponding
asymmetries in two-hadron inclusive deep inelastic scatter-
ing !DIS" involving the same IFFs to facilitate comparison.
We end with conclusions !Sec. VI".

II. KINEMATICS

We will consider the process e"e#→(h1h2)( h̄1h̄2)X ,
schematically depicted in Fig. 1. An electron and a positron
with momenta l and l!, respectively, annihilate into a photon
with timelike momentum q$l"l! and q2$Q2. A quark and
an antiquark are then emitted and fragment each one into a
residual jet and a pair of leading unpolarized hadrons
(h1 ,h2) with momenta P1 ,P2, and masses M 1 ,M 2 &for the
antiquark we have the corresponding notation ( h̄1 , h̄2) with
momenta P̄1 , P̄2 and masses M̄ 1 ,M̄ 2]. We introduce the vec-
tors Ph$P1"P2 , R$(P1#P2)/2, and P̄h$ P̄1" P̄2 , R̄
$( P̄1# P̄2)/2. The two jets are emitted in opposite direc-
tions; therefore, Ph• P̄h(Q2. We can parametrize the mo-
menta as &13'

Ph
)$

zhQ
!2

n#
) "

Mh
2

zhQ!2
n"

) (
zhQ
!2

n#
) ,

P̄h
)$

z̄hQ
!2

n"
) "

M̄ h
2

z̄hQ!2
n#

) (
z̄hQ
!2

n"
) ,

q)$
Q
!2

n#
) "

Q
!2

n"
) "qT

) , !2"

where #qT
2#QT

2%Q2, and n" ,n# are light-like vectors sat-
isfying n"

2 $n#
2 $0 and n"•n#$1. The approximations in

Eq. !2" of neglecting hadron masses with respect to Q2 does

FIG. 1. Kinematics for the e"e#→(h1h2)( h̄1h̄2)X process.

BOER, JAKOB, AND RADICI PHYSICAL REVIEW D 67, 094003 !2003"

094003-2

Boer, Jakob, Radici,  
P.R.D67 (03) 094003

in the cross section, all terms          change sign →       in                   same as in SIDIS 

compatibility restored !

H
^
1 Acos(�R+�̄R̄) AUT

quark

h2

h1
2RT

PhT

? ĥ
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helicity DiFF  G1

Matevosyan, Bacchetta, Boer, Courtoy, Kotzinian, Radici, Thomas, 
arXiv:1802.01578

⏊

proposed “jet handedness” asymmetry to extract        vanishes 

confirms BELLE findings 

G?
1

hcos 2(�R � �̄R̄)i = 0

FIG. 2: Results for Acos(2(�R1��R2 )) binned in M and z. The black error bars are statistical and
the green bands show the systematic uncertainty.

using the truncated Fourier expansion

1 + A
cos(�R1+�R2) cos (�R1 + �R2) + A

cos(2(�R1��R2 )) cos (2(�R1 � �R2)) . (4)

The amplitude A
cos(2(�R1��R2 )) corresponds then to the quantities in Eq. (2), whereas the

amplitude A
cos(�R1+�R2) corresponds to the previously published measurement of H^

1 [4].
Results binned in M and z of one hadron pair are shown in Fig. 2 integrated over z and M

of the other pair.
The purity of the sample is above 90% for di-pion pairs, with the remaining 10% com-

ing from an admixture of kaons. The leading systematic e↵ects are the contributions from
detector smearing and fiducial cut edge e↵ects to the measured asymmetries. These are
estimated from simulations using Pythia [13] and EvtGen [14] for various physics processes
not including the polarization dependent ones of Eq. (2), and GEANT3 [15] for the detector
e↵ects. In addition to the light (u, d, s) quark fragmentation, our results also contain signifi-
cant contributions from charm quark production. The charm contribution is 18% on average
and approximately constant over the invariant mass bins. In z, it drops monotonically from
21% to 5%.

Within our statistical and systematic uncertainties, we do not observe a deviation from

zero for A
cos(2(�R1��R2 )). Statistical uncertainties are symmetric and about 10�3 in mag-

nitude, whereas our systematic uncertainty is asymmetric and varies between 2 · 10�3 at
low M and low z and 5 · 10�3 at high M and z. It has been conjectured that the G

?
1

fragmentation function receives non-zero contributions mainly from p-p wave interference in
the partial-wave expansion of G?

1 . We note that an enhancement of such contribution by
restricting ✓decay, the decay angle of the positive hadron in the hadron-pair CMS used in
such expansion, to values for which cos(✓decay) is positive does not result in a significantly
non-zero amplitude either.

In summary, we show first results for azimuthal modulations in the cross-section of di-
pion pairs in di-jet production from electron-positron annihilation. The amplitude of the
cos (2(�R1 � �R2)) modulation, which is sensitive to the helicity dependent fragmentation
function G

?
1 , is consistent with zero within our statistical and systematic uncertainties.

We thank the KEKB group for the excellent operation of the accelerator; the KEK
cryogenics group for the e�cient operation of the solenoid; and the KEK computer group,
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which asymmetry to get   ?   

G?
1 (z,M

2
h) ⌘ G?,[0],(1)

1 (z,M2
h)�G?,[2],(1)

1 (z,M2
h)

G?,[n],(p)
1 (z,M2

h) = z2
Z

dkT

✓
k2
T

2M2
h

◆p Z
d⇠

|RT |
Mh

G?,[n]
1 (z, ⇠, |kT |, |RT |)

G?
1

hT i =
Z

d⇠

Z
d⇠̄

Z
d�R

Z
d�̄R̄

Z
dqT T d�

N.B. hcos(�R � �̄R̄)i = 0 hcos(�R � �̄R̄)i(q2
T ) 6= 0but

hq2
T (2 cos(�R � �̄R̄)� cos(2�1 � �R � �̄R̄)i

/
X

q

G?q
1 (z,M2

h) Ḡ
?q̄
1 (z̄, M̄2

h)

→  there must be a node

Matevosyan et al., 
arXiv:1712.06384



The  power  of  DiFFs

collinear framework → factorization theorems

e+e− → (π+π−) (π+π−) X

Ae+e� ⇠ H
^
1 H

^
1

D1 D1

SIDIS:   e p↑ → e’ (π+π−) X

ASIDIS ⇠ h1 H
^
1

f1 D1

p p↑ → (π+π−) X

App ⇠ f1 ⌦ h1 ⌦H
^
1

f1 ⌦ f1 ⌦D1

universality of DiFF and  
usual DGLAP evolution
Ceccopieri, Radici, Bacchetta, P.L.B650 (07) 81 

Courtoy et al., P.R. D85 (12) 114023

Boer, Jakob, Radici, P.R. D67 (03) 094003

Bacchetta and Radici, P.R. D70 (04) 094032

Bacchetta, Courtoy, Radici, JHEP 1303 (13) 119
Bacchetta, Courtoy, Radici, P.R.L. 107 (11) 012001

Radici et al., JHEP 1505 (15) 123

Radici, Jakob, Bianconi, P.R.D65 (02) 074031 
Bacchetta & Radici, P.R. D67 (03) 094002

Radici et al., P.R.D94 (16) 034012

hermes

prediction

extraction

prediction

extraction

prediction

test universality

extraction of transversity
from first global fit

Radici & Bacchetta, arXiv:1802.05212



hermes
Airapetian et al., JHEP 0806 (08) 017

Adolph et al., P.L. B713 (12)

Braun et al., E.P.J. Web Conf. 85 (15) 02018
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global fit :  the STAR  data

90% uncertainty band

Adamczyk et al. (STAR),  
P.R.L. 115 (2015) 242501
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χ2  of  the  fit

χ2/dof = 2.08 ± 0.09

Total

SIDIS

STAR

38%

62%

~75% (of 38%) from COMPASS (higher precision) 
but ~40% (of 75%) from deuteron bins



theoretical  uncertainties

typical cross section for   a+b→c+d   process

Single-Spin Asymmetry  
in p-p↑ collisions

d�0 /
X

a,b,c,d

Z
dxadxb

8⇡2z̄
fa
1 (xa) f

b
1(xb)

d�̂ab!cd

dt̂
Dc

1(z̄,Mh)

AUT (⌘,Mh, PT ) =
d�UT

d�0

we don’t know anything about the gluon D1g  (e+e− doesn’t help..)

our choice:  compute dσ0 with D1g (Q0) =
0
D1u (Q0) / 4
D1u (Q0) {

deteriorates our e+e− fit as  χ2/dof =
1.69 
1.81 
2.96 

1.28 
1.37 
2.01 

background ρ       channels

{

quark D1q is well constrained by e+e− (Montecarlo) but



comparison  with  previous  fit

Soffer 
bound

upglobal fit

old fit higher 
precisionRadici et al.,  

JHEP 1505 (15) 123

global fit



comparison  with  previous  fit

Soffer 
bound

upglobal fit

old fit higher 
precision

0

Radici et al.,  
JHEP 1505 (15) 123

D1g (Q0) = 0

D1g (Q0) = D1u /4
D1u{

global fit

up
insensitive to 

uncertainty on
gluon D1

global fit



comparison  with  previous  fit

Soffer 
bound

down
global fit

old fit

effect of STAR data :
saturation of Soffer bound 

practically disappeared
Radici et al.,  
JHEP 1505 (15) 123

Soffer bound  
@10 GeV2

Q2 ~ 9            Q2 ~15 GeV2



sensitivity to gluon D1g

Soffer 
bound

global fit

0

D1g (Q0) = 0

D1g (Q0) = D1u /4
D1u{

down
sensitive to 

uncertainty on
gluon D1

need dihadron multiplicities from RHIC
and better deuteron data from COMPASS

global fit

up
insensitive to 

uncertainty on
gluon D1



MC-based models of FF
Quark-parton Model Interpretation of SIDIS: 

Transverse Momentum Dependent PDFs (TMDs)

5/23/2015 CIPANP 2015 6

Quark polarization

Unpolarized
(U)
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- extended NJL quark-jet model

- string fragmentation model



quark hadronization chain 
Nambu-Jona Lasinio model at each vertex 
D1q→h(z, pT2) = MC statistical average of  
                        proper multiplicities 
results for q=u,d,s    
       and   h= π, K, ρ, K*, φ, N

u

 extended NJL quark-jet model 
2

tion [13]. Projections for such asymmetries were given
in Ref. [14], where SIDIS two hadron asymmetries were
fitted using a spectator model, and making use of the
evolution equations of the DFFs derived in Ref. [15]. In
Ref. [16], IFFs were extracted by fitting a parametriza-
tion form to recent e+e� measurements by the BELLE
collaboration [17], using input from PYTHIA [18] for the
unpolarised DFFs that enter the relations for the asym-
metries. A perturbative calculation for DFFs at large
invariant mass was performed in Ref. [19].

The most recent non-perturbative model for DFFs was
constructed in Ref. [20] based on the spectator approach,
where the model parameters were fixed by fitting the un-
polarised DFFs for ⇡+⇡� pairs to Monte Carlo (MC)
samples generated using PYTHIA [18]. In these stud-
ies, due to the limited information on both unpolarised
and interference DFFs, a number of assumptions and ex-
trapolations were employed. Moreover, the extractions
of unpolarised DFFs were conducted on Monte Carlo
events generated by PYTHIA. They therefore depend
on the particular models used for the parton hadroniza-
tion and resonance decays (such as vector to pseudoscalar
mesons). These decays, as shown in our earlier work [21]
and will be again demonstrated here, have large e↵ects
on DFFs.

DFFs describe the production of two hadrons in the
parton hadronization process. They are more challenging
in terms of both theoretical description and experimen-
tal extraction than ordinary FFs. The theoretical models
should give a detailed picture of the hadronization to final
states in order to accurately describe DFFs, as the lead-
ing hadron approximation typically used in FF models is
insu�cient here. It is easy to see that, even in the region
of large total light-cone momentum fraction, choosing a
pair where one leading hadron has a large light-cone mo-
mentum fraction of the fragmenting quark requires the
second hadron in the pair to have small light-cone mo-
mentum fraction. Thus it can be produced at higher
(subleading) order. Hence a model providing complete
hadronization picture is needed for such studies, such
as the Lund model [22] implemented in the PYTHIA
event generator [18, 23]. The original studies of Field
and Feynman, based on their quark-jet model [24, 25]
of ”collinear” DFFs that depend only on the light-cone
momentum fractions of each hadron in the pair, have
been recently extended within the NJL-jet model includ-
ing the kaon production channel and also exploring their
scale evolution [26, 27].

Here we expand the NJL-jet model and the correspond-
ing Monte Carlo (MC) software of [28–34] to calculate
unpolarised DFFs of light and strange quarks to sev-
eral low-lying pseudoscalar and vector mesons. We ac-
complish this by using the probabilistic interpretation of
DFFs and the complete quark hadronization description
given by the NJL-jet model. We also study the strong
two- and three-body decays of the vector mesons and
their e↵ects on the resulting pseudoscalar meson DFFs,
where we reported the first results for u ! ⇡+⇡� in our

q
Q

Q’ Q’’

h 2h 1

FIG. 1. The quark-jet hadronization mechanism.

earlier work Ref. [21]. We also study the scale evolu-
tion of the DFFs, crucial for comparing our low energy
model results with those extracted from experiments in
the deep-inelastic regime.
This paper is organised in the following way. In the

next Section we briefly introduce the NJL-jet model and
explain in detail our method of calculating the DFFs us-
ing MC methods. In Section III we present our results
for the NJL-jet model calculations of unpolarised DFFs.
In Section IV, we briefly discuss the QCD evolution of
DFFs and present the sample results of our model DFFs
evolved to a typical experimental scale. This will be fol-
lowed by Section V with conclusions and outlook.

II. CALCULATING DFFS IN THE NJL-JET
MODEL

A. The NJL-jet Model

The NJL-jet model provides a multi-hadron emission
framework for describing the quark hadronization pro-
cess, where any single hadron production probability is
calculated within an e↵ective quark model. The multi-
hadron emission is described using the original quark-jet
hadronization framework of Field and Feynman [24, 25],
which is schematically depicted in Fig. 1. Here the frag-
menting quark sequentially emits hadrons that do not
re-interact with other produced hadrons or the remnant
parton. The elementary hadron emission probabilities at
each vertex are calculated using the e↵ective quark model
of Nambu and Jona-Lasinio (NJL) [35, 36], using the
Lepage-Brodsky regularisation scheme with dipole cut-
o↵, as described in Ref. [32]. Using the interpretation
of fragmentation functions as probability densities al-
lows one to extract them from the corresponding hadron
multiplicities. These are calculated as Monte Carlo av-
erages of the hadronization process of a quark with a
given flavour when restricting the total number of emit-
ted hadrons for each fragmentation chain to a predefined
number. In the limit of an infinite number of produced
hadrons, used in the original formalism of Field and Feyn-
man, this procedure yields a coupled set of integral equa-
tions for both FFs and DFFs [24, 25]. A detailed study
of convergence to this limit with an increasing number of
produced hadrons has been performed in Ref. [30], where
it was shown that for collinear FFs only a few hadron

Matevosyan et al.,  
P.R. D83 (11) 114010 
      D86 (12) 059904(E)

Matevosyan et al.,  
P.R. D85 (12) 014021

- pT-dependence deviates from Gaussian 
- <pT2>: flavor- and nonlinear z-dependent

dependence on the azimuthal angle ’ in Eq. (3) to extract

both Dh=q
1 ðz; P2

?Þ and H?h=q
1 ðz; P2

?Þ, where the former can
be compared with our earlier results in Ref. [18] as a cross-
check. To achieve this goal, we first expand the NJL-jet
model and the associated Monte Carlo framework to ac-
commodate the transverse spin of the fragmenting quark in
Sec. II. In Sec. III, we calculate the elementary unpolarized
and Collins fragmentation functions, needed as an input to
the NJL-jet model. In Sec. IV, we present the results for a
simple toy model used as elementary Collins function to
demonstrate the distinctive features of the model. In Sec. V,
we discuss the full model results and present the conclu-
sions and some final remarks in Sec. VI.

II. NJL-JET WITH TRANSVERSELY
POLARIZED QUARK

The NJL-jet model employs the quark-jet mechanism to
describe the hadronization process. Here we use the model
to describe the fragmentation of the transversely polarized
quarks to unpolarized hadrons, schematically depicted
in Fig. 2.

An important intricacy arises from the need to keep track
of the transverse spin of the quark in the jet as it emits
hadrons. We first examine the elementary process where a
transversely polarized quark emits a single hadron, and we
calculate the probability of the final quark’s spin being
parallel or antiparallel to the original quark’s spin direc-
tion. In this work we only consider the emissions of
pseudoscalar mesons. Further, we make a first order ap-
proximation by including in the calculations of the quark
spin flip probabilities the elementary hadron emissions
only via the tree-level diagram depicted in Fig. 4, thus
neglecting any T-odd effects. The T-odd effects are con-
sidered here to be small relative to the included unpolar-
ized term, though essential for generating the elementary
Collins function. This approximation can be easily im-
proved on in the future by also including in the quark
spin flip calculation the relevant diagrams that generate
the elementary Collins function, such as that discussed
in Sec. III B.

We use the kinematics depicted in Fig. 1, with the
fragmenting quark’s momentum defining the z axis. We
denote the remnant quark as Q with momentum and spin
vectors l and SQ. We use the Dirac spinors of [24,25] to
describe the wave functions of transversely polarized
quarks

U! # 1ffiffiffi
2

p ½UðþzÞ þ !Uð&zÞ'; (9)

where ! ¼ )1 are the eigenvalues of the spin projection
onto the x axis and Uð)zÞ are the Lepage-Brodsky spinors
in helicity basis [26]. Note that we have a plus sign in front
of the second term with !, as there is a sign error in the
corresponding expressions of [24]. The spinorsU! are both
solutions of the Dirac equation and the eigenstates of the
Lorentz-covariant spin operator: the Pauli-Lubanski vector

W" # & 1

2
#"$%&S

$%k&; (10)

S$% # {

4
½'$;'%'; (11)

where #"$%& is the Levi-Civita tensor with convention
#0123 ¼ þ1. It is easy to check explicitly that

W1U! ¼ !
m

2
U!; (12)

ð6k&mÞU! ¼ 0: (13)

The normalization of the spinors is

!U !ðk;mÞU!0ðk;mÞ ¼ (!;!02m: (14)

Then the fragmenting quark’s spinor is "in ¼ U1ðk;M1Þ,
while the remnant quark’s spinor can be described as
a superposition of states with spin polarization parallel
and antiparallel to the x axis: "out ¼ a1U1ðl;M2Þ þ
a&1U&1ðl;M2Þ. Then the relative probabilities of the quark
spin flip and nonflip are determined by j !"out'

5"inj2. The
spinor matrix elements are given by

j !U!0ðl;M2Þ'5U!ðk;M1Þj2 ¼ (!;!0
l2x

1& z
þ (!;&!0

* l2y þ ðM2 & ð1& zÞM1Þ2
1& z

;

(15)

and hence the spin nonflip and spin flip probabilities are
proportional to

ja1j2 + l2x; ja&1j2 + l2y þ ðM2 & ð1& zÞM1Þ2: (16)

We note, however, that the spinors U!ðk;mÞ become
the eigenstates of W1 only if the momentum k has no
transverse components: kx ¼ ky ¼ 0. Though the final
state quark necessarily has a transverse momentum

FIG. 2 (color online). NJL-jet model including transverse
momentum and quark polarization transfer. Here the orange
double-lined arrows schematically indicate the spin direction
of the quark in the decay chain.
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expressed as k2 ¼ p2
?=ðzð1# zÞÞ þM2

2=ð1# zÞ þm2
h=z.

Since only the imaginary part of the amplitudes con-
tribute to the above expression, the loop integrals for
those can be calculated without the need for explicit
regularization

I2g¼
!

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"ðM2;mhÞ

p ln

2
4k2þM2

2#m2
h#

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"ðM2;mhÞ

p

k2þM2
2#m2

hþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"ðM2;mhÞ

p
3
5;

I34g¼!ln
" ffiffiffiffiffi

k2
p

ð1#zÞ
M2

#
;

"ðm1;m2Þ¼ðk2#ðm1þm2Þ2Þðk2#ðm1#m2Þ2Þ: (26)

Then the elementary polarized fragmentation function is
given as

dh=q"ðz;p2
?;’Þ ¼ dh=q1 ðz;p2

?Þ# ~H?h=q
1 ðz;p2

?Þ
p?Sq
zmh

sin ð’Þ;

(27)

where we use the multiplicative regulator of Eq. (22) for
integrals over p2

?. The only remaining parameter is the
strong coupling in Eq. (25). We consider it as a model
parameter, that we fix to the largest value of #s ¼ 0:444,
that still allows for the positivity bound to be satisfied,
namely dh=q" & 0. At the next-to-leading order, this value

corresponds to a typical hadronic scale of Q2 ¼ 1 GeV2,
which is much higher than the one typically used as the
NJL-jet model scale, namely Q2

0 ¼ 0:2 GeV2. Such a
discrepancy between the scales for the unpolarized and
Collins functions is rooted in the model for the Collins
function employed here, which would violate the positiv-
ity bound if calculated at the typical model scale. A
similar issue was encountered in the original work of
Ref. [11], where the value of #s ¼ 0:2 was chosen,
much smaller than that for the scale of their model set
at Q2 ¼ 0:4 GeV2. A completely consistent determina-
tion of a single scale for the polarized fragmentation
function must involve the QCD evolution of both the
TMD unpolarized and Collins functions. This is not pos-
sible at present, because the evolution equation for the
Collins function is unknown.

Within the NJL-jet model, the elementary splitting
functions are renormalized such that quark’s total
probability of emitting a hadron in each step is one:

P
h

R
dzdp2

?=2d’d̂h=q"ðz; p2
?; ’Þ ¼ 1, the sum is over all

hadrons the quark of given flavor can emit directly. These
renormalized splittings will be used in the next two sec-
tions as input to the Monte Carlo simulations of the quark-
jet hadronization process. The integrated renormalized
elementary fragmentation functions for the full model
calculations of Sec. V are depicted in Fig. 6.

IV. THE QUARK-JET EFFECTS ON COLLINS
FUNCTION USING ATOY MODEL

In this section we employ a toy model for the elementary
Collins function to explore the general features of the
NJL-jet model extended to transversely polarized quark
fragmentation, as described in Sec. II. In this toy model we

assume that # ~H?h=q
1 ðz; p2

?Þ
p?Sq
mhz

¼ 0:1dh=q1 ðz; p2
?Þ. Thus

for the elementary number density we simply have

dðtoy Þ
h=q"

ðz; p2
?Þ ¼ dh=q1 ðz; p2

?Þð1þ 0:1 sin’Þ; (28)

where dh=q1 ðz; p2
?Þ is given by Eq. (21).

For the toy model, we perform the MC simulations with
only light quarks in the quark-jet and pions in the final
state, for simplicity. We perform several high-statistics

FIG. 5 (color online). Cut diagram describing the elementary
quark to hadron Collins fragmentation functions.
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FIG. 6 (color online). Elementary renormalized unpolarized
fragmentation function d̂1 (a) and Collins function 1=2 moment

2Ĥ?ð1=2Þ
1 (b) used in the full model calculations of Sec. V.
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- includes transverse momentum 
and spin correlations
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tion [13]. Projections for such asymmetries were given
in Ref. [14], where SIDIS two hadron asymmetries were
fitted using a spectator model, and making use of the
evolution equations of the DFFs derived in Ref. [15]. In
Ref. [16], IFFs were extracted by fitting a parametriza-
tion form to recent e+e� measurements by the BELLE
collaboration [17], using input from PYTHIA [18] for the
unpolarised DFFs that enter the relations for the asym-
metries. A perturbative calculation for DFFs at large
invariant mass was performed in Ref. [19].

The most recent non-perturbative model for DFFs was
constructed in Ref. [20] based on the spectator approach,
where the model parameters were fixed by fitting the un-
polarised DFFs for ⇡+⇡� pairs to Monte Carlo (MC)
samples generated using PYTHIA [18]. In these stud-
ies, due to the limited information on both unpolarised
and interference DFFs, a number of assumptions and ex-
trapolations were employed. Moreover, the extractions
of unpolarised DFFs were conducted on Monte Carlo
events generated by PYTHIA. They therefore depend
on the particular models used for the parton hadroniza-
tion and resonance decays (such as vector to pseudoscalar
mesons). These decays, as shown in our earlier work [21]
and will be again demonstrated here, have large e↵ects
on DFFs.

DFFs describe the production of two hadrons in the
parton hadronization process. They are more challenging
in terms of both theoretical description and experimen-
tal extraction than ordinary FFs. The theoretical models
should give a detailed picture of the hadronization to final
states in order to accurately describe DFFs, as the lead-
ing hadron approximation typically used in FF models is
insu�cient here. It is easy to see that, even in the region
of large total light-cone momentum fraction, choosing a
pair where one leading hadron has a large light-cone mo-
mentum fraction of the fragmenting quark requires the
second hadron in the pair to have small light-cone mo-
mentum fraction. Thus it can be produced at higher
(subleading) order. Hence a model providing complete
hadronization picture is needed for such studies, such
as the Lund model [22] implemented in the PYTHIA
event generator [18, 23]. The original studies of Field
and Feynman, based on their quark-jet model [24, 25]
of ”collinear” DFFs that depend only on the light-cone
momentum fractions of each hadron in the pair, have
been recently extended within the NJL-jet model includ-
ing the kaon production channel and also exploring their
scale evolution [26, 27].

Here we expand the NJL-jet model and the correspond-
ing Monte Carlo (MC) software of [28–34] to calculate
unpolarised DFFs of light and strange quarks to sev-
eral low-lying pseudoscalar and vector mesons. We ac-
complish this by using the probabilistic interpretation of
DFFs and the complete quark hadronization description
given by the NJL-jet model. We also study the strong
two- and three-body decays of the vector mesons and
their e↵ects on the resulting pseudoscalar meson DFFs,
where we reported the first results for u ! ⇡+⇡� in our

q
Q

Q’ Q’’

h 2h 1

FIG. 1. The quark-jet hadronization mechanism.

earlier work Ref. [21]. We also study the scale evolu-
tion of the DFFs, crucial for comparing our low energy
model results with those extracted from experiments in
the deep-inelastic regime.
This paper is organised in the following way. In the

next Section we briefly introduce the NJL-jet model and
explain in detail our method of calculating the DFFs us-
ing MC methods. In Section III we present our results
for the NJL-jet model calculations of unpolarised DFFs.
In Section IV, we briefly discuss the QCD evolution of
DFFs and present the sample results of our model DFFs
evolved to a typical experimental scale. This will be fol-
lowed by Section V with conclusions and outlook.

II. CALCULATING DFFS IN THE NJL-JET
MODEL

A. The NJL-jet Model

The NJL-jet model provides a multi-hadron emission
framework for describing the quark hadronization pro-
cess, where any single hadron production probability is
calculated within an e↵ective quark model. The multi-
hadron emission is described using the original quark-jet
hadronization framework of Field and Feynman [24, 25],
which is schematically depicted in Fig. 1. Here the frag-
menting quark sequentially emits hadrons that do not
re-interact with other produced hadrons or the remnant
parton. The elementary hadron emission probabilities at
each vertex are calculated using the e↵ective quark model
of Nambu and Jona-Lasinio (NJL) [35, 36], using the
Lepage-Brodsky regularisation scheme with dipole cut-
o↵, as described in Ref. [32]. Using the interpretation
of fragmentation functions as probability densities al-
lows one to extract them from the corresponding hadron
multiplicities. These are calculated as Monte Carlo av-
erages of the hadronization process of a quark with a
given flavour when restricting the total number of emit-
ted hadrons for each fragmentation chain to a predefined
number. In the limit of an infinite number of produced
hadrons, used in the original formalism of Field and Feyn-
man, this procedure yields a coupled set of integral equa-
tions for both FFs and DFFs [24, 25]. A detailed study
of convergence to this limit with an increasing number of
produced hadrons has been performed in Ref. [30], where
it was shown that for collinear FFs only a few hadron

- extended to DiFF

Moreover, it is believed that the two SSAs are gener-
ated by di↵erent mechanisms, namely the Collins e↵ect
in one-hadron SIDIS and the interference of the hadron
pair production amplitudes in two hadron SIDIS. Re-
cently the COMPASS collaboration presented the re-
sults of their analysis demonstrating a similarity be-
tween SSAs extracted with these two methods [9, 10].
Namely, they found that the SSA for pairs of oppo-
sitely charged hadrons appears to be very close to the
Collins asymmetry for positively charged hadron pro-
duction, which in turn is very close to that for nega-
tively charged hadrons taken with opposite sign. Also,
both 'R and 'T modulations have been suggested to oc-
cur because of the Collins e↵ect in Refs. [1, 11]. Fur-
ther, both the unpolarized DiFF and the IFF at large in-
variant mass were recently calculated using perturba-
tive quantum chromodynamics in Ref. [12]. Here it was
shown that the IFF in the large invariant mass regime is
intimately connected to the Collins fragmentation func-
tion at large transverse momentum.

The dihadron approach has recently attracted a lot of
attention, with the first extraction of transversity per-
formed in Ref. [13, 14] using the SIDIS two hadron
SSA measured by HERMES [15] and COMPASS [16],
along with e

+
e
� measurements by the BELLE collabo-

ration [17]. IFFs and unpolarised DiFFs were extracted
from fits to BELLE data either using spectator model
calculations [18, 19] or parametric forms [20], along
with input from Monte Carlo (MC) unpolarised event
generator PYTHIA.

Here we study the dihadron fragmentation func-
tion to oppositely charged pions for a transversely po-
larised quark in a simple model based on the NJL-jet
model [21–30]. In this model we use the NJL-jet frame-
work to describe the quark hadronisation process, and
allow for an elementary Collins e↵ect in one of the
hadron emission steps. We use MC simulations to ex-
tract both polarised single- and di-hadron FFs using
their probabilistic interpretation. We study the possi-
ble sine modulations of these FFs with respect to the
Collins, 'R and 'T angles (defined in the next sec-
tion), respectively, in order to establish whether the el-
ementary Collins e↵ect can generate terms in polarised
DiFFs with modulations that are expected to be induced
by IFFs H

^
1 and H

?
1 , as expected within the standard

TMD approach [5]. This information will be help-
ful in further developments of the state-of-the-art non-
perturbative models for DiFFs [18].

This paper is organised in the following way. In the
next Section of this article we will briefly describe the
details of the model used to extract the polarised FFs. In
Section 3 we will present the results for the single and

Figure 1: NJL-jet model including transverse momentum and quark
polarisation transfer. Here the orange double-lined arrows schemati-
cally indicate the spin direction of the quark in the decay chain.

dihadron FFs and we will finish with the conclusions in
Section 4.

2. Simple Model for Hadronisation of a Trans-

versely Polarised Quark

The NJL-jet model describes the quark hadronisation
process within a framework based on the original Field
and Feynman quark-jet picture [31, 32], where the ini-
tial fragmenting quark produces hadrons in a quark de-
cay chain cascade, as schematically depicted in Fig. 1.
The remnant quark’s properties after each hadron emis-
sion are determined using the flavour and momentum
conservation constraints. In the NJL-jet model the el-
ementary hadron emission probabilities at each vertex
are calculated using the NJL model.

We first describe the kinematics and the MC method
for calculating the single hadron FFs. This is followed
by the calculation of dihadron FFs.

2.1. Single Hadron Fragmentation Functions from MC

We describe the single hadron FFs in the quark-jet
formalism as probability distributions for a quark to
produce a hadron with certain properties. The rele-
vant kinematics is schematically depicted in Fig. 2. The
transversely polarised quark q carries four-momentum k

and spin Sq and fragments to an unpolarised hadron h of
mass mh and four-momentum P. The coordinate system
is chosen such that the z axis is along the direction of the
three-momentum of the initial fragmenting quark q and
the x axis is along the spin vector Sq. Then the relevant
momenta can be expressed as

k = (k�, k+, 0), P = (P�, zk
+, P?), P

2 = m
2
h
, (1)

where z ⌘ P
+/k+ is the initial quark’s light-cone mo-

mentum fraction carried by the hadron1. The Collins
angle ' is taken as the angle between P? and Sq, as de-
picted in Fig. 2.

1We use the following LC convention for Lorentz 4-vectors
(a�, a+, a?), a

± = 1p
2

(a0 ± a
3) and a? = (a1, a2).
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FIG. 1: Left: multiperipheral diagram. Right: the
associated momentum diagram.

nant represented by a diquark. This process is supposed
to occur via a quark chain diagram shown in Fig. 1 and
modelised as the set of splittings

qA ! h1 + q2, q2 ! h2 + q3, . . .

. . . qr ! hr + qr+1, . . . qN ! hN + qB (2)

i.e., as the iteration of the elementary splitting

q ! h+ q0 (3)

where the flavour content of the hadron h is qq̄0. The
index r = 1, 2 . . . N in Eq. (2) is the rank of the hadron
or of the splitting quark. The production of baryons is
not included in the present code. In the following k de-
notes the 4-momentum of a quark, p that of a hadron. In
Eq. (3) momentum conservation gives p = k� k0. In the
recursive model one assumes that the initial 4-momenta
k1 ⌘ kA and k

B
⌘ �kB are on mass shell and gener-

ated beforehand1. In the qAq̄B centre-of-mass frame we
orient the ẑ axis (named jet axis) along kA. In SIDIS
this axis usually di↵ers from that defined in the labora-
tory frame by the virtual photon momentum, due to the
primordial transverse momentum of the struck quark in-
side the nucleon. The “lightcone” components of p are
p± = p0±pz and the transverse ones pT = (px, py) (sim-
ilarly for k and k0). The mass-shell constraint writes
p+p� = m2

h + pT
2 ⌘ ✏2h, where ✏h is the hadron trans-

verse energy.
The energy-momentum sharing between h and q0 in Eq.

(3) is drawn at random following the splitting distribution

dN(q ! h+ q0) = Fq!h+q0(Z,pT
,kT)

dZ

Z
d2pT , (4)

1 This is a classical approximation: considering Fig. 1 as a loop
diagram, kA is an internal momentum. The cross section is then
of the form

R
d4kA A(kA, · · · )

R
d4k0A A⇤(k0A, · · · ) with kA and

k0A being generally di↵erent and o↵ mass shell.
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FIG. 2: Space-time history of the string fragmentation. It
corresponds to the multiperipheral diagram shown in Fig. 1.

where the longitudinal splitting variable Z = p+/k+ is
the fraction of forward lightcone momentum of q taken by
the hadron h. (dZ/Z) d2pT = d3p/p0 is relativistically
invariant.

III. THE STRING + 3P0 MODEL

A. Review of the spinless string fragmentation
model

Hadronization of a quark pair qAq̄B is considered as
successive breakings of a massive string stretching be-
tween qA and q̄B, which we call here a sting. Each break-
ing creates a new quark-antiquark pair. A semi-classical
treatment of this process leads to a recursive model with
a very specific form of the splitting function. We will
start with the simple classical (1 + 1)D yoyo model [12]
where the created quarks have no mass, no spin and no
transverse momentum. Then the complexity will be in-
creased step by step by introducing masses, transverse
momenta and spin.

1. The (1+1)D yoyo model

In this model everything occurs in the (t, z) hyper-
plane. One assumes that the sting has a uniform proba-
bility P dz dt to break in the space-time area dz dt. From
the quantum point of view, the “string fragility” P is
taken into account by adding an imaginary part �i~P/2
to the string tension  ' 1 GeV/fermi [13–15]. The
complex string tension C =  � i~P/2 is analogous
to the complex mass m � i~�/2 of an unstable parti-
cle. The decay products are small strings which oscil-
late like yoyos. Figure 2 shows the corresponding space-
time history. The string world sheet (hatched domain)
is bordered by quark world lines. The breaking points
Q2,Q3, · · ·QN , completed by the return points Q1 and
QN+1, form an a-causal chain, i.e., the 2-D vector QrQs
is space-like. The one-point breaking density in the (t, z)

qAq̄B ! h1 + h2 + . . .+ hN
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FIG. 6: Classical string + 3P0 mechanism of Collins e↵ect.
(a) Elementary mechanism. (b) Iteration in the emission of

pseudo-scalar mesons.

a tunnel e↵ect and that, at the end of this process, qr
and q̄r are on the string axis (the z axis), with transverse
momenta krT and �krT respectively, zero longitudinal
momenta, and separated by the vector

dr ⌘ rqr � rq̄r = �2 ẑ (m2

qr + k2

rT)
1/2/ . (23)

The string between qr and q̄r has been “eaten” by the
pair. The modulus of dr is fixed by energy conservation
and its orientation is that of the initial color flux, i.e.,
from qA to q̄B. The quark pair has a relative orbital
momentum

Lr = dr ⇥ krT . (24)

One furthermore assumes that the qr q̄r pair is in the 3P0

state (which possesses the quantum numbers of the vac-
uum). In such a state the spins are parallel and opposite
to Lr :

hsqr · sq̄r i > 0 , hsqr · Lri < 0 , hsq̄r · Lri < 0 . (25)

It follows from (23), (24) and (25) that the polarisations
of qr and q̄r are correlated to their transverse momenta:

hkrT ⇥ sqr i · ẑ > 0 , hkrT ⇥ sq̄r i · ẑ > 0 . (26)

Besides (25), which correlates sqr and sq̄r , there is a cor-
relations between sqr and sq̄r+1 coming from the internal
wave function of the meson hr. In particular, if hr is a
pseudoscalar meson (⇡, K, ⌘ or ⌘0),

hsqr · sq̄r+1i < 0 , (27)

as required by the 1S0 internal wave function.
Figure 6 depicts the spin and kT correlations in the re-

cursive decay of the sting when only pseudoscalar mesons
are emitted and assuming that qA is polarized along +ŷ

(as represented by an anti-clockwise arrow). According
to (25) and (27), q2 and q̄2 are both polarized along �ŷ
(clockwise arrow) and their relative orbital momentum
L2 is along +ŷ (anti-clockwise arrow). Then q̄2 and q2
move respectively in the +x̂ and �x̂ directions, in ac-
cordance with (26). The transverse momentum �k2T

of q̄2, which is toward +x̂, is absorbed by h1, result-
ing in a Collins e↵ect with hp1,xi > 0, more generally
hp1T ⇥ SA,Ti · ẑ > 0.

C. Quantum treatment of the quark spin

We encode the quark spin degree of freedom with Pauli
spinors and, using the multiperipheral approach, trans-
form the vertex function V and the propagator D of Eqs.
(16)-(17) into 2⇥2 matrices acting on quark spin. w, u
and the quark density U of Eqs. (16)-(19) become den-
sity matrices (Hermitian and semi-positive definite) in
spin space. Full Lorentz invariance would require the use
of Dirac spinors, but Pauli spinors are su�cient to sat-
isfy the invariance under the above mentioned subgroup.
Note that it does not take into account the whole spin
information (2 q-bits) carried by an o↵-mass-shell Dirac
particle.

1. General formalism

We first consider a general mutiperipheral model, not
necessarily combined with the string model. The ampli-
tude for reaction (1) is

hSB|M(qAq̄B ! h1h2...hN )|SAi =
hSB| D(qB)V(qB, hN , qN )D(qN ) · · ·

· · · V(q3, h2, q2)D(q2)V(q2, h1, qA)D(qA) |SAi. (28)

To save place, the gothic letters gather several variables:
for a quark q = {q, k}, where q is the flavor; for a hadron
h = {h, p, sh}, where h is the hadron species and |shi
belongs to an adopted spin basis (e.g., helicity basis).
Thus, D(q) ⌘ D(q, k) and V(q0, h, q) ⌘ Vq0,h,sh,q(k

0, k).
|Si is the Pauli spinor of polarization S = (ST, SL), with
T and L referring to the transverse and longitudinal po-
larizations of the quark respectively. |SBi is related to
the polarization S

B
of the antiquark q̄B by

|SBi = ��z|� S
B
i, (29)

which is the analog of the Dirac spinor v(k,S) =
��5 u(k,�S) of an antiparticle.
The functions D(q) and V(q0, h, q) may be chosen as

input of the model. However they can be “renormalized”
by the transformation

D(q) ! ⇤L(q)D(q)⇤R(q) ,

V(q0, h, q) ! ⇤�1

R (q0)V(q0, h, q)⇤�1

L (q) (30)
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FIG. 11: Comparison between the Collins asymmetry Ap
Coll measured by COMPASS [26] (open points) and the Monte Carlo

analysing power au"!⇡±+X scaled by � (full points): as function of zh (left panel) and of pT (right panel). The cuts
pT > 0.1GeV/c and zh > 0.2 have been applied in both cases.

of Minv. Still, both in BELLE and in simulation results,
no structure can be seen.

We recall that, in order to cancel, or minimize, the
e↵ects due to the primordial transverse momenta, the
dihadron asymmetry is normally written in terms of the
azimuth of the relative transverse momentum

RT = (zh2p1T
� zh1p2T

)/z. (65)

For the BELLE results we are considering here, the vector
characterizing the pair is

p
1T

� p
2T

= 2RT + (zh1 � zh2)PT/z (66)

where PT = p
1T

+ p
2T

is the global transverse momen-
tum of the pair. Defining as ”pure” di-hadron asymme-
try the one defined with respect to the vector RT, the
asymmetry extracted from the BELLE data is a com-
bination of the ”pure” di-hadron asymmetry and of the
global Collins e↵ect of the pair.

Comparison with COMPASS data. In Fig. 13 we show
the comparison between the Monte Carlo and the COM-
PASS dihadron asymmetry for h+h� pairs measured in
SIDIS o↵ transversely polarized protons as function of z
(left) and Minv (right). The dihadron asymmetry is ex-
tracted using � = �R where �R is the azimuthal angle
of the vector RT, thus it can be regarded as a pure di-
hadron asymmetry. Both in COMPASS data and in sim-
ulations the cuts zh > 0.1, xF > 0.1, RT > 0.07GeV/c
and |pi| > 3GeV (i = 1, 2) have been applied.

The left plot of Fig. 13 concerns the dependence on
z. The Monte Carlo points are scaled by a factor �2

estimated by comparing with the COMPASS asymme-
try as function of z. From a �2 minimization we obtain
�2 = 0.055 ± 0.008 in perfect agreement with the value
of �1 obtained in the single hadron asymmetry case, as
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FIG. 12: Monte Carlo calculation of ✏(Minv) for pions pairs
produced in transversely polarized u jets asking for each
pion of the pair zh > 0.1 (circles) and also pT > 0.3GeV/c

(squares). The black open triangles are the values of
✏(Minv) obtained from BELLE data [28].

expected. The results from the Monte Carlo are in good
agreement with the experimental data.

The right plot of Fig. 13 shows the dependence of the
analysing power on Minv. The same cuts as those for the
dihadron asymmetry as function of z have been applied.
After scaling by the same parameter �2, the Monte Carlo
points describe quite well the trend of the data.
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C. Comparison between single hadron and
dihadron transverse spin asymmetries

Following the work done in Ref. [27] we have stud-
ied the relationship between the Collins and the di-
hadron analyzing powers for hadron pairs in the same
u quark jet, as function of the relative azimuthal angle
�� = �1��2. In that analysis using only the events with
at least one h+ and one h� two kinds of asymmetries
had been extracted: the ”Collins Like” (CL) asymme-
tries Asin�C

CL1(2)
for positive and negative hadrons and the

dihadron asymmetry for oppositely charged hadron pairs

A
sin�2h,S

CL,2h . In each bin of ��, the CL asymmetry is the

Collins asymmetry of h+ (h�) of the pair.

As in Ref. [27] we calculate au"!h+h�
+X using � =

�2h, where �2h is the azimuthal angle of the vector p̂
1T

�
p̂
2T

and p̂
T
⌘ p

T
/|p

T
|. Due to the relation

p̂
1T

� p̂
2T

= RT(1/|p1T
|+ 1/|p

2T
|)

+ PT

zh1/|p1T
|� zh2/|p2T

|
z

, (67)

the considered asymmetry is a combination of the ”pure”
dihadron asymmetry and of the global Collins asymmetry
of the hadron pair. However, as discussed in Ref. [27],
the azimuthal angle �R is strongly correlated with �2h,
and the dihadron asymmetry measured from 2hsin�2h,Si
with �2h,S = �2h � �SA , is essentially the same as the
”pure” dihadron asymmetry, which could be verified with
the code as well.

The blue squares in Fig.14 (a) represent the di-hadron

analyzing power au"!⇡+⇡�
+X calculated in the Monte

Carlo as function of ��. The blue curve is the result of
the fit with the function c

p
2(1� cos��) as suggested in

Ref. [27]. The plot in Fig. 14 (b) shows the asymmetry

A
sin�2h,S

CL,2h as measured in COMPASS. As can be seen, the
agreement is good and in particular the mirror symmetry
between h+ and h� is clear in both cases. Note that

the A
sin�2h,S

CL,2h asymmetry is smaller than au"!⇡+⇡�
+X

by a factor of 0.1 analogous to �2 but for the higher cut
xB > 0.032 adopted in this experimental analysis.
The same considerations hold also for CL analysing

power Asin�C

CL1(2)
of h+ and h� shown in the top plot of

Fig.14 (a) with red circles and black triangles respec-
tively. The corresponding COMPASS data are shown in
top plot of Fig. 14 (b): again, the trend is very simi-
lar. The MC points are fitted with functions of the type
�1(2) + c1(2) sin��, as suggested from Ref. [27], and the
results are represented by the red and the black dashed
lines. The slight up-down disymmetry for h+ and h� in
the simulated results is due to the di↵erent values of the
analyzing power for h+ and h�. The red and the black
dashed lines in Fig.14 (b) represent the fits to the exper-
imental CL asymmetries as shown in Ref. [27], which are
consistent with vanishing �1(2) parameters.
As a conclusion, the Collins asymmetry and the di-

hadron asymmetry are generated by the same physical
mechanism, which in our case is the string +3P0 hypoth-
esis.

D. Introducing the primordial transverse
momentum

In the previous sections we did not consider the pri-
mordial transverse momentum of the initial quark. In
this section we show the results when the initial quark
qA does have a primordial transverse momentum. Figure
15 depicts the string direction in the DIS �⇤-nucleon cen-
ter of mass frame when the struck quark has primordial
transverse momentum kTprim, inherited from the quark
motion in the nucleon. kTprim, also written kT/q�

, is
defined with respect to the �⇤ momentum q� . The tar-
get remnant has the opposite �kTprim. The string is
stretched between qA and the target remnant. Its axis
is therefore rotated from the �⇤-nucleon axis. The e↵ect

SIDIS Collins effect

SIDIS di-hadron effect

no resonant structure
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