3D EXTRACTION METHODS

Contalbrigo Marco INFN Ferrara

Fragmentation Functions 2018 February 21, 2018 Stresa

The QCD View

Non Perturbative Physics

TMDs Landscape

Phenomenology:

gather active dynamic mechanisms spin-orbit, short range correlations, nuclear p_T broadening

make educated guesses on parton behavior average transverse momentum, orbital motion

is the naïve interpretation of the observable sensible ?

Predictive Power (applicability as for collinear PDFs):

rigorous treatment, i.e. for tensor charge extraction, exploiting

universality

evolution well defined but not necessarily under control at medium-low energy

scale dependence should improve with next-to-leading orders, as for k-factor in DY

can the non perturbative parameters be constrained at B-factories ?

DIS Cross-Section

Contalbrigo M.

Acceptance Effects

In binned asymmetries acceptance does not necessarily cancel

$$A_{LL}(\overline{\Omega}) = \frac{\sigma_{LL}(\overline{\Omega})}{\sigma_{UU}(\overline{\Omega})} \neq \frac{\int \varepsilon(\Omega) A(\Omega) F_{LL}(\Omega) d\Omega}{\int \varepsilon(\Omega) B(\Omega) F_{UU}(\Omega) d\Omega}$$

WARNINGs:

- Phenomenological fits buy such an underline approximation
- Integral may folds-in unwanted contributions
- Even a collinear analysis needs an un-integrated analysis to control systematics in case of non-uniform azimuthal acceptance

Multi-D Investigation

Disentanglement

- kinematic dependences
- dynamical regimes (twist, perturbative)
- kinematical dilutions

With such a precision systematics is highly not-trivial as any small effect matters

The typical values (i.e. average Q²), or general behaviors are misleading as each corner matters in its own

х

0.7

P_{h1} Accessible range

Not anymore in the TMDs regime

 $\frac{p_T^2}{O^2} \sim O(1)$

Relevant for matching with high- $\ensuremath{p_{\text{T}}}$ perturbative calculations

Do we ever rich the perturbative regime ?

What can we learn/improve about soft-gluon resummation ?

Is the Y term dominating everywhere at fixed target energies ?

Gaussian ansatz quandary is the simplified version of the matching problem

Target vs Current Fragmentation

Or forward vs backward hemisphere fragmentation Can thrust be used to define a e+e- $x_{F/}$ rapidity indicator ?

Berger criterion [P.J. Mulders hep-ph/0010199] Ζ W = 5 GeV0.001 current jet target jet $_{K}^{\pi}$ 0.01

Empirical criterion Inclusive Λ/Λ yield at W~5 GeV

Semi-Inclusive vs Exclusive

When the exclusive is no more part of the semi-inclusive ?

Is the cross-contamination due to i.e. radiative effects under control ?

JLab Pion Multiplicities (@ 6 GeV)

 $\pi^{+/-}$ multiplicities at large z diverge from SIDIS predictions π^{0} multiplicities less affected by higher twists 0.4<z<0.7 kinematical range, where higher twists are expected to be small

FF2018, 21st February 2018, Stresa

Event Migration and Moment X-talk

What about event migration ?

- define bins larger than resolution

but keep in mind non-linearities!!!

$$\frac{dx}{x} \propto \frac{1}{y} \frac{dp}{p}$$

- radiative effects change the kinematics and introduce a x-talk between moments

a full knowledge of the hadronic tensor is in principle required

- acceptance may fold-in

unwanted (not fully integrated out) or un-physical moments

No real difference with ISR x acceptance

Event Migration and Moment X-talk

Event migration implies a reshuffling, not a loss of information.

unfolding smearing and radiative effects introduces a statistical correlation the full statistical power of data is restored using the covariance matrix

$$Y_{Exp} = M Y_{Born} + Y_{Back}$$

Detector model (known) (in principle known)

Un tested physics (model dependence)

Longitudinal Cross-section

Knowledge on R = σ_L/σ_T

in SIDIS is non-existing!

To be accounted in any TMD asymmetry interpretation

R_{DIS}→0 at Q²→∞ due to scattering off spin-½ quarks

R_{DIS} sensitive to gluon and higher-twist effects

 $R_{SIDIS}(z,pT)$ = un-integrated R_{DIS}

Azimuthal Modulations of F_{UU}

Contalbrigo M.

FF2018, 21st February 2018, Stresa

Hall-B Mission

Comprehensive measurements based on :	High luminosity up to 10 ³⁵ cm ⁻² s ⁻¹ Large acceptance (current & target fragmentation) Polarized beam and targets Multi-particle final state measurements
	multi-particle final state measurements

6 GeV

12 GeV

CLAS12 Forward Detector (Current Region)

Torus + Time-of-Flight Wall (Hadron ID)

Low-Threshold Gas Cherenkov (pion ID)

Ring-Imaging Cherenkov (Hadron ID)

Contalbrigo M.

FF2018, 21st February 2018, Stresa

CLAS12 Central Detector (Target Region)

High-Threshold Gas Cherenkov (elec. ID)

Central Neutron Detector

Silicon + MicroMegas Vertex Detector

SIDIS Projections

Commissioning with beam since Dec 17

Starting physics data-taking this week

Simultaneous run of all the 4 experimental Halls for the first time

Azimuthal modulations:

From Data to Phenomenology

Elementary Bins vs macroscopic bins Pros:

1) can go to wider bins

Cons: 1)Requires huge MC sample For precision studies of TMDs <u>we need</u> <u>x-sections/muliplicities in smallest</u> <u>possible bins in x,y,z,P_T, ϕ for all hadrons</u> <u>and relevant polarization states</u>

- 2) smaller bin centering corrections
- 3) can merge different experiments
- 4) can perform also Bessel weighting
- 5) can re-calculate for any other kinematical variables (η ,P_T/z,...)

Radiative SIDIS

Akushevich&llyichev in progress

$$\begin{array}{c} & & & \\ & &$$

 ϕ_k is an angle between $(\mathbf{k}_1, \mathbf{k}_2)$ and (\mathbf{k}, \mathbf{q}) planes.

$$e(k_1,\xi) + n(p,\eta) \to e(k_2) + h(p_h) + u(p_u) + \gamma(k),$$
 $\delta^4(k_1 + p - k_2 - p_h - p_u - k)$

3D Extraction and VAlidation (EVA) framework

Development of a reliable techniques for the extraction of 3D PDFs and fragmentation functions from the multidimensional experimental observables with controlled systematics requires close collaboration of experiment, theory and computing

Conclusions

To perform a 3D investigation we need to work in multi-D

binning is only the starting point and implies

- new tools for multi-D systematics approach
- manage stat and sys correlations
- identify proper regime
- new ways of present or exploits the outputs

New facilities anticipates a mess of data (BELLEII, BESIII, COMPASSII, JLab12, EIC.....)

We have no more excuses but face the challenge!

EVA framework provides a comprehensive approach attempt

Conclusions

BACKUP

Contalbrigo M.