*BABAR* and BESIII results on fragmentation functions



## Workshop on Fragmentation Function 2018 Stresa, February 19-22, 2018

### Fragmentation function in $e^+e^-$ annihilation

**Outline**:

- **Polarized Fragmentation functions** ٠
  - Measurement of Collins asymmetries:
    - $e^+e^- \rightarrow \pi\pi + X$ ,  $\pi K + X$ , and KK + X
    - Global fits

۲

- **Unpolarized Fragmentation functions** ٠
  - Inclusive production of light hadrons at  $\sim 10 \text{ GeV}$ 
    - $\pi$ , K, p/p production
    - Global fits
  - Inclusive studies on charmed baryons at  $\sim 10 \text{ GeV}$ 
    - Inclusive  $\Lambda_c$ ,  $\Omega_c$  and  $\Xi_c$  spectra
- Summary and perspectives ۲





### Fragmentation functions in $e^+e^-$ annihilation

The process that transform quarks and gluons into colorless hadrons is referred to as **FRAGMENTATION** (or hadronization)



## Fragmentation functions in $e^+e^-$ annihilation



• Fragmentation functions (FFs) describe the process of hadronization of a parton

- Non-perturbative objects
- **Universal** functions
  - Depend on the scaled energy of the hadron *h*:

 $x = 2E_h/\sqrt{s}$ , with  $\sqrt{s}=Q$  in  $e^+e^-$ 

Experimentally related to the final-state single particle energy distribution  $\frac{1}{\sigma_0} \frac{d\sigma^{e^+e^- \to hX}}{dx} = F^h(x,s) = \sum_{i=q,\bar{q}} \int_x^1 \frac{dz}{z} C_i\left(z,\alpha_s(\mu),\frac{s}{\mu^2}\right) D_i^h\left(\frac{x}{z},\mu^2\right) + \mathcal{O}\left(\frac{1}{\sqrt{s}}\right)$   $\sigma_0 = \sum_q \frac{4\pi\alpha^2}{s} \left(1 + \frac{\alpha_s}{\pi} + ...\right)$ process dependent short distance interaction
Parton Fragmentation
Function
F

- $D_1^h(z,Q^2)$  describes the probability that a parton *i* fragments into a hadron *h* carrying a fraction *z* of the parton momentum
- $e^+e^-$  annihilation is the cleanest environment to study the fragmentation functions
  - parton momenta known, no need of PDFs, but low sensitivity to gluon FF

### Polarized (i.e. spin-dependent) FFs

- Connection between microscopic (quark spin) and macroscopic observables (angular distributions and/or polarization of produced hadrons)
- Needed to:
  - test schemes of factorization and universality among  $e^+e^-$ , (SI)DIS, and pp
  - probe evolution as fundamental QCD prediction
  - in general test any approach to solve QCD at soft scale
- Spin analyzer for studying the transversity PDF
  - -3D structure of the nucleon
- Many FFs defined theoretically, depending on the polarization of the parton and of produced hadron(s)
- Great improvement in recent years thanks to new high-quality data collected in the different experimental schemes

20 February 2018, Stresa

Fabio Anulli

### Three players at low-medium $Q^2$ BESIII at Q<sup>2</sup>~13 GeV<sup>2</sup>, and *BABAR* and Belle at Q<sup>2</sup>~110 GeV<sup>2</sup>



- Beijing Electron Positron Collider II (BEPCII)
  - Symmetric e<sup>+</sup>e<sup>-</sup> collider
  - Beam energy: 1-2.3 GeV
  - 2008: test run
  - 2009-today: BESIII physics runs
- Luminosity:  $\mathcal{L} \sim 62 \text{ pb}^{-1}$  @ 3.65 GeV used

here (below open charm threshold)





- PEP-II storage ring
  - asymmetric e<sup>+</sup>e<sup>-</sup> collider operating at the  $\Upsilon(4S)$  resonance ( $\sqrt{s}=10.58$  GeV)
  - High Energy Ring (HER): 9.0 GeV e
  - Low Energy Ring (LER): 3.1 GeV e<sup>+</sup>
  - c.m.-lab boost, βγ≈0.56
- High luminosity:  $\mathcal{L} \sim 468 \text{ fb}^{-1}$  used here

NIM **A479**, 1 (2002), update: NIM **A729**, 615 (2013)

Note: Belle results will be covered by Gunar Schnell (today) and Ralf Seidl (tomorrow)

# Collins asymmetries for charged pions and kaons

## The Collins Fragmentation Function

Polarized FF (Collins FF): dependence on  $z=2E_h/\sqrt{s}$ ,  $P_{\perp}$ , and  $s_q$ 

"Standard" unpolarized FF

$$D_1^{q\uparrow}(z, \mathbf{P}_\perp; s_q) = D_1^q(z, P_\perp) + \frac{P_\perp}{zM_h} H_1^{\perp q}(z, P_\perp) \mathbf{s}_q \cdot (\mathbf{k}_q \times \mathbf{P}_\perp)$$

- $\mathbf{H_1}^{\perp}$  is the **polarized** fragmentation function or **Collins FF**
- Chiral-odd function
- could arise from a spin-orbit coupling
- leads to an asymmetry in the angular distribution of final state particles (Collins effect) NPB 396,161(1993)
- first non-zero Collins effect observed in SIDIS PRL 94,012002(2005) NPB 765, 31(2007)

In  $e^+e^-$  annihilation,  $\gamma^*$  (spin-1)  $\rightarrow$  spin-1/2 q and  $\overline{q}$ 

e⁻

- in a given event, the spin directions are unknown, but they must be parallel

- they have a polarization component transverse to the q direction  $\sim \sin^2\theta$  ( $\theta$  wrt the e<sup>+</sup>e<sup>-</sup>)

· exploit this correlation by using hadrons in opposite jets

 $e^+e^- \rightarrow q\overline{q} \rightarrow \pi_1\pi_2 X \ (q=u, d, s) = > \sigma \propto cos(\phi_i)H_1^{\perp}(z_1) \otimes H_1^{\perp}(z_2),$ 

**e**<sup>+</sup>

or

### Collins effect in hadron-hadron correlation

Detection of hadron pairs with same or opposite charge sensitive to different combination of **favored** and **disfavored** FFs

• favored FF: one of the parent quarks matches a valence quark in the hadron,

• i.e.:  $u \rightarrow \pi^+, d \rightarrow \pi^-, s \rightarrow K^-, \dots$ 

• **disfavored FF:** no such match, *i.e.*  $d \rightarrow \pi^+, u \rightarrow \pi^-, s \rightarrow K^-, s \rightarrow \pi^\pm, \dots$ 



## Analysis reference frames



### **RF12** or Thrust RF

- Thrust axis to estimate the  $q\overline{q}$  direction
- ${\scriptstyle \bullet} \, \varphi_{1,2}$  defined using thrust-beam plane

 $P_2$ 

 $\theta_2$ 

• Modulation diluted by gluon radiation, detector acceptance,...

$$\sigma \sim 1 + \frac{\sin^2 \theta_{th}}{1 + \cos^2 \theta_{th}} \cos(\phi_1 + \phi_2) \frac{H_1^{\perp}(z_1) \bar{H}_1^{\perp}(z_2)}{D_1(z_1) \bar{D}_1(z_2)}$$



### **RF0** or Second hadron momentum RF

- Alternatively, just use one track in a pair
- Very clean experimentally (no thrust axis), less so theoretically
- Gives quark direction for higher pion momentum

$$\sigma \sim 1 + \frac{\sin^2 \theta_2}{1 + \cos^2 \theta_2} \cos(2\phi_0) \mathcal{F}\left[\frac{H_1^{\perp}(z_1)\bar{H}_1^{\perp}(z_2)}{D_1(z_1)\bar{D}_1(z_2)}\right]$$

Collins effect is measured as a function of the pions fractional energy  $(z_{1,2}=2E\pi/\sqrt{s})$ , pions transverse momentum  $(p_{t1},p_{t2},p_{t0})$ , and as a function of the polar angle of the reference axis  $(\theta_{th}, \theta_2)$ 

## Analysis reference frames



Events in BESIII much more spherical, and the two hemispheres are hardly identifiable  $\rightarrow$  only RF0 can be used at BESIII, pairing tracks with opening angle  $\theta_{h1,h2} > 120^{\circ}$ 



### Extraction of asymmetry parameters from data



 $N^{(U,L)}(\phi)/\langle N^{(U,L)}(\phi) \rangle$  in data sample



Collins Asymmetries

 extracted from fit to the normalized azimuthal distribution

$$R_{\alpha} = \frac{N(\phi_{\alpha})}{\langle N_{\alpha} \rangle} = a + \mathbf{b} \cdot \cos(\phi_{\alpha})$$

- unpolarized contribution is flat
- Collins FF contained in the cosine moment b
- The MC generator does not include polarized FF as the Collins FF
  - observed modulation in MC sample produced by detector acceptance
  - correction of these effects with MC would bring to too large systematic uncertainties
- Collins effect not sensitive to electric charge
  - U and L distribution coincident in MC
  - slightly different in data due different contribution of favored and unfavored FF

### **Double Ratios**

- **Double Ratio (DR)** of Unlike-sign over Like-sign pion pairs:
- **c** eliminate the acceptance effects and the first order radiative effects
  - acceptances and radiative contributions do not depend on the charge combination of the pion pair;
  - approximation holds for small asymmetries.



MC: small deviation from zero ==> assigned as a systematic error



## Analysis strategy

- Event and track selection
- Construction of spinless hadron pairs
  - KK, Kπ, ππ for BaBar
  - \* ππ for BESIII
- Measure of the azimuthal angles  $\phi_1$  and  $\phi_2$  in RF12 (BaBar), and  $\phi_0$  in RF0 (BaBar and BESIII)
- Calculation of the ratios of normalized distributions: U/L and U/C
   fit to these distributions with the function b+a·cos(x)
- Evaluation of background contributions and extraction of the Collins asymmetries

### **BABAR results:**

PRD 90, 052003 =>  $\pi\pi$  pairs

- $A^{UL}$  and  $A^{UC}$ , in RF12 and RF0
- in bins of  $(z_1, z_2)$ ,  $(p_{t1}, p_{t2})$  or  $p_{t0}$ ,  $\sin^2\theta/(1+\cos^2\theta)$ , and 4D-analysis in bins of  $(z_1, z_2, p_{t1}, p_{t2})$

PRD 92, 111101(R) =>  $\pi\pi$ , K $\pi$ , KK pairs

- $A^{UL}$  and  $A^{UC}$ , in RF12 and RF0
- in bins of  $(z_1, z_2)$

#### **BESIII results**:

PRL 116, 042001 =>  $\pi\pi$  pairs

- $A^{UL}$  and  $A^{UC}$  in RF0 only
- in bins of  $(z_1, z_2)$ ,  $p_{t0}$  and  $\sin^2\theta/(1+\cos^2\theta)$

### Collins effect in pion pair production: A vs $(z_1, z_2)$

Measurement performed by Belle (PRD78, 032011, Erratum PRD 86, 039905) and *BABAR* (PRD90, 052003) at  $Q^2$ ~110 GeV<sup>2</sup>, and by BESIII (PRL 116, 042001) at  $Q^2$ ~13 GeV<sup>2</sup>



- Significant non-zero asymmetries  $A_{12}$ ,  $A_0$
- Strong dependence on  $(z_1, z_2)$  seen in all experiments
- A<sup>UC</sup> < A<sup>UL</sup> as expected. Complementary information about favored and disfavored fragmentation
- BESIII data in agreement with predictions, with exception of the very high *z* region
  - Theory pred. [PRD93, 014009] based on *B*-factories results and evolution

0.8 0.2 0.6 **RF0** BESI uc 0.15 A<sub>III</sub> prediction Auc prediction 0.1 0.05 2  $(\mathbf{Z}_1, \mathbf{Z}_2)_{\text{bir}}$ 0.9/0.3 0.5 0.2 0.3 0.5 0.9/0.5 0.2 0.3 0.5

z1=[0.3-0.4]

z1=[0.7-0.9

RF0

Fabio Anulli

### Comparison among measurements



• *BABAR* & Belle data falling in the larger BESIII *z*-bins are averaged taking into account stat. and syst. uncertainties



- Good agreement between different data sets
- Larger asymmetries measured for BESIII at highest *z*-values for A<sub>0</sub> asymmetries
  - consistent with theory predictions [Kang et al. PRD 93, 014009 (2016)]
- Some tension between *BABAR* and Belle on  $A_{12}$  asymmetries, which can be attributed to experimental features:
  - different thrust axis corrections
  - background corrections
  - -z < 0.9 for *BABAR* vs z < 1.0 for Belle

### $\pi\pi$ results and global fits

Extraction of the Transversity PDF and Collins FF combining SIDIS and  $e^+e^-$  data

*Anselmino et al*: PRD 92 114023 (2015)



Comparison between old fit (SIDIS + Belle data) with new fit (*BABAR*  $\pi\pi$  data added)

- Fit uncertainties significantly reduced in the new analysis
- Good consistency for the transversity function
- Differences seen for the Collins FF at Q<sup>2</sup>=2.4 GeV<sup>2</sup> mainly due to the different parametrization used

## Collins asymmetries vs hadrons transverse momenta

Measurements by *BABAR* [PRD90, 052003], and **BESIII** [PRL 116, 042001] but not by **Belle** 





- Asymmetries increase with  $p_{\rm t}$
- less pronounced for  $A_{12}$ , for which the  $p_t$  determination is subject to large uncertainties (~100-150 MeV)
- Good data-prediction agreement for BESIII

### Collins asymmetries vs hadrons transverse momenta

BABAR [PRD90, 052003] and BESIII [PRL 116, 042001] data comparison



### Multi-dimensional asymmetries

*BABAR* published also the Collins asymmetries measured in 4 dimensions:  $(z_1, z_2, p_{T1}, p_{T2})$  in (4x4x3x3) bins

Despite the limited statistics, some features can be recognized.

With two order of magnitude more data expected at Belle 2, these multi-dimensional asymmetries could be of paramount importance for global fits.





- \*  $\pi\pi$  results consistent with previous *BABAR* analysis
- $\bullet$  Measurement of dependences on  $p_t$  in progress

### Extraction of the Collins FF from BABAR kaon data



**Anselmino et** *al.* PRD 93, 034025 (2016)

- It uses the pion fav. and disfav. Collins FF extracted in PRD 92 114023 (2015)
- Extract the corresponding kaon Collins FFs.

Test universality of Collins FF: Calculate SIDIS single spin asymmetries from the fitted function and compare with data  $\rightarrow$  good agreement observed



20 February 2018, Stresa

Fabio Anulli

# Inclusive hadronic particle spectra

### Inclusive Particle Spectra at Q~10 GeV

- Unpolarized cross sections, integrated over angles and p<sub>T</sub>
- Precise measurements of IPS at different energies needed to:
  - better comprehend fragmentation processes
  - check consistency with a number of fragmentation models
  - test scaling violation
  - test QCD predictions
- Most of data collected at LEP energies
- Limited precision measurements at low-energy before *B*-factories



- > Inclusive Spectra measured by *BABAR*:
  - > 3 light mesons (  $\pi^{\pm}$ ,  $K^{\pm}$ ,  $\eta$  )
  - > 1 light baryon  $(p/\overline{p})$
  - > 4 Heavy baryons (  $\Lambda_c$ ,  $\Xi_c$ ,  $\Xi'_{c}$ ,  $\Omega_c$  )
- > Measurements performed both at  $\sqrt{s}=10.54$  GeV and at  $\Upsilon(4S)$  mass peak

### Inclusive light hadrons production

- Data sample: 0.9 fb<sup>-1</sup> @Y(4S) and 3.6 fb<sup>-1</sup> at 10.54 GeV.
- Measured both *conventional* and *prompt* hadrons cross sections:
  - prompt: primary hadrons or products of a decay chain where all particles have a lifetime shorter than 10<sup>-11</sup>s
  - conventional: includes weak decay products of K<sub>S</sub> and strange baryons
- Scaled momentum distribution:  $x_p = \frac{2p^h}{E_{cm}}$ 
  - Coverage:  $0.2 < p^h < 5.27 \text{ GeV/c}$
  - Syst. uncertainties from  $\sim 2\%$  to  $\sim 10\%$  in the highest momentum bins, dominate the full error
- Data consistent with ARGUS and Belle data, with some deviation at the highest momenta
- Consistency of pion and kaon data with models within ~10%, but significant differences in shape
- Poor description of proton data



## Scaling properties



• Hadronization should be scale invariant except for "small" effects of hadron masses, running of  $\alpha_S, \dots$ 

• Scaling violations at low  $x_{p}$ , due to masses are well known and modeled adequately (here JETSET is shown for comparison)

Expect substantial scaling violations at high x<sub>p</sub>:
Seen clearly in π and K data; reproduced by models (within a few % for π, and 15% for K)
Much smaller scaling violation in proton data than models predict



### New DSS fit for pion data

de Florian et al. Phys. Rev. D91, 014035 (2015)



Global QCD analysis of parton-to-pion fragmentation at NLO

→ extract  $D_i^{\pi+}(z,Q_0)$ ;  $Q_0=1$ GeV  $i=u+\overline{u},d+\overline{d},s,c$   $D_{\overline{u}}=D_d,D_{\overline{s}}=D_s,$   $D_{\overline{c}}=D_c$ w.r.t. previous DSS analysis it uses the new precise data from *BABAR*, Belle, Hermes and COMPASS

Good description of *B*-factories data

Belle used the entire data set => the precise and fine binning data up to  $z\sim1$ . The fit seems to overshoot data for  $z \ge 0.8$ : missing logarithmic corrections?

*BABAR* data extend down to  $z\sim0.04$ . The fit deviate from data already around  $z\sim0.11$ , due to neglected hadron-mass effects

### Test of MLLA+LHPD QCD predictions

In the Modified Leading Logarithmic Approximation (MLLA) with Local Parton Hadron Duality (LHPD) ansatz [Azimov, Z.Phyis.C27,65 (1985)]:

the multiplicity distributions versus  $\xi = -\ln(x_p)$  should be Gaussian near the peak;

The peak position  $\xi$ \* should decrease esponentially with increasing hadron mass at a given  $E_{\rm cm}$ 

Peak position ξ\* from symmetric gaussian fits

|              | $\pi^{\pm}$       | $K^{\pm}$         | $p/\bar{p}$       |
|--------------|-------------------|-------------------|-------------------|
| Prompt       | $2.337\pm0.009$   | $1.622\pm0.006$   | $1.647 \pm 0.019$ |
| Conventional | $2.353 \pm 0.009$ | $1.622 \pm 0.006$ | $1.604 \pm 0.013$ |
| i+ i         | is observed 5     | * ~ 2*            |                   |

 $S_{n} \approx S_{K}$ 



## Test of MLLA+LHPD QCD predictions

 $\xi$ \* should increase logarithmically with *s* for a given hadron type



> *BABAR* and  $Z^0$  data provide precise determination of the slopes

- All data are consistent with the expected logarithm dependence with the center-of-mass energy
- Similar slopes for pions and protons, different for kaons
  - > possibly due to flavor composition changing with  $E_{cm}$

Fabio Anulli

# Inclusive production of charmed hadrons

- Phys.Rev. D75, 012003 (2007) : Inclusive  $\Lambda_c$  production
- Phys.Rev.Lett. 95, 142003 (2005) : Production and decay of  $\Xi_c$
- Phys.Rev.Lett. 99, 062001 (2007) : Production and decay of  $\Omega_c$
- hep-ex/0607086 :  $\Xi_c'$  production

# Charm production at *BABAR*

- Heavy hadrons produced in  $e^+e^-$  annihilations provide a laboratory for the study of heavy-quark jet fragmentation
- Relevant quantities are
  - Relative production rates for different spin, parity, ...
  - Associated momentum spectra
  - Differences among mesons and baryons
- Measurements at 10.54 GeV, below  $B\overline{B}$  production threshold, are the ideal place to study  $e^+e^- \rightarrow c\overline{c}$  reactions, and test charm fragmentation functions, the charmed hadrons being made of one of the leading quarks
- Large amount of data to study  $b \rightarrow c$  decays from inclusive measurements at the  $\Upsilon(4S)$ :
  - *B*-mesons  $\rightarrow$  charmed mesons/baryons

### Inclusive $\Lambda_c$ spectrum measurement PRD 75, 012003 (2007)

9.5 fb<sup>-1</sup> off-resonance 81 fb<sup>-1</sup> on-resonance

- reconstruct  $\Lambda_c^+ \rightarrow pK^-\pi^+$  from tracks consistent from originating from interaction point
- evaluate track efficiencies from data in two-dimensional  $(p, \theta)$  bins
- weight events according to inverse efficiency matrix
- fit mass peak in each  $x_p$  bin



▶ Determine e<sup>+</sup>e<sup>-</sup> → cc̄ events from off-resonance data (E<sub>cm</sub>=10.54 GeV)
 ▶ Determine e<sup>+</sup>e<sup>-</sup> → BB̄ events from on-resonance data subtracting the off-resonance cross section scaled by the different c.m. energy

### Charmed hadrons inclusive cross sections



PRL.95, 142003 (2005)(Babar) PRD73, 032002 (2006) (Belle) PRD75, 012003 (2007)(Babar) PRL 99, 062001 (2007)(Babar)

- Heavier particles generally plotted vs normalized momentum  $x_p = p^h/p^h_{max}$
- Charmed hadrons contains large fraction of charm-quark momentum
  - Distributions peak at large x<sub>p</sub>
- Differences on peak position and distribution shape seen among the various hadrons

### Summary

- Great improvement in recent years in the knowledge of FFs and PDFs, necessary for a complete 3D pictures of hadrons.
  - Interplay between measurement of different physics processes and theoretical calculations (global fits with different assumptions and approaches)
- $e^+e^-$  collisions provide the most clean environment for studying FFs, complementary to SIDIS and pp collisions with polarized targets
- Recent results at  $Q^2 \sim 110$  **7** and  $\sim 13 \text{ GeV}^2$  **HS** 
  - Collins asymmetries for charged hadron pairs in two-jet events:
    - $\pi\pi$ , πK, and KK pairs (for  $\pi\pi$  also A vs  $p_t$ )  $\Im$
  - Di-hadrons asymmetries measured for pion pairs =>  $H^{\triangleleft}$  and  $G_1^{\perp}$ 
    - Consistency between extraction of h<sub>1</sub> with Collins or di-hadrons asymmetries in SIDIS and  $e^+e^-$ . Implications on  $Q^2$  evolution of TMDs
  - Measurement of single hadron multiplicities for several light and heavy hadrons
  - Measurement of di-hadrons multiplicities 7



Several analysis ongoing and/or planned at each experiment

## **BABAR** and **BESIII** perspectives

- Studies in progress (*i.e.* the close future):
  - $p_{\rm t}$  dependence of Collins asymmetries for KK and K $\pi$  pairs
  - the analysis is presently stopped, but we plan to resume it in a few months
  - we tested the Double Ratio (DR) method, and look for the possibility to measure the asymmetries directly from normalized distribution rather than from DR
- *BABAR* plans (or better the wishlist)
  - Lack of manpower and approaching of the end of *BABAR* activities force us to carefully choose the analyses to attack next (if any) => suggestions welcome
  - Differential cross section vs  $p_t$  of inclusive particle production => determination of  $D_{1,q}^{h}(z,Q^2,k_T)$
  - Di-hadron FFs also for kaons (multiplicities and/or asymmetries)
- BESIII:
  - Despite the fact that it will run for other 7-8 years, the manpower for this physics topics is presently negligible
  - Minimal plans (here also open to suggestions)
    - Collins asymmetries for kaons
    - Single-hadron production multiplicities

# **BACKUP SLIDES**

## Inclusive $\Lambda_c$ studies

- The  $\Lambda_c^+$  (*cud*) is the lightest c-baryon
- We precisely measured its mass reconstructing two low-Q decays, to minimize systematic uncertainties
- We find (PRD 72, (2005) 052006) -  $m(\Lambda_c^+) = 2286.46 \pm 0.14 \text{ MeV}/c^2$
- More precise and 2.5σ higher than the previous PDG value:

$$- m_{PDG}(\Lambda_c^+) = 2284.9 \pm 0.6 \text{ MeV}/c^2$$



### Inclusive $\Lambda_c$ spectrum measurement

- Several fragmentation functions implemented in JETSET generator
  - distributions affected by JETSET simulation of gluon radiation
  - test each models against our data usinξ
     a binned χ<sup>2</sup>
- No model seems to correctly reproduce the data, but
- The fitted values of the free parameters are quite different from those used for light hadrons and charmed mesons
- These results indicate the needs of different functions for baryons and mesons (like in DIS, where there is a dependency on the number of spectator quarks)



### Inclusive $\Lambda_c$ spectrum measurement

- We measure (at  $E_{cm}$ =10.54 GeV):
- $< x_p > = 0.574 \pm 0.009$
- Total rate per event:

 $N_{\Lambda_c}^{q\bar{q}} = 0.057 \pm 0.002 (\exp) \pm 0.015 (\Lambda_c BF)$ 

- assuming  $\Lambda_C^+$  from  $e^+e^- \rightarrow cc$ , we get a production rate per c-jet of:  $N_{\Lambda_C}^{c-jet} = 0.071 \pm 0.003(\exp) \pm 0.018(\Lambda_C BF)$
- Result consistent with previous CLEO and Belle measurements



PRD 75, 012003 (2007)

- Compare to other baryons or mesons
- $\Lambda_C$  peak slightly lower w.r.t.  $\Xi_c$
- ► *D* mesons (both PS and V state), show broader peaks and differ significantly for  $x_p \sim 1$



### More *c*-baryons inclusive spectra: $\Xi_c^0$ and $\Omega_c^0$

• Measurements based on a data set of 230 fb-1







\* M.G. Bowler, Z. Phys. C11, 169 (1981). Fabio Anulli 40

### More *c*-baryons inclusive spectra: $\Xi_{c}^{'}$

#### hep-ex/0607086

| State    | Mass (MeV/c <sup>2</sup> ) | JP   |
|----------|----------------------------|------|
| ы<br>Е   | 2470                       | 1/2+ |
| Ес       | 2575                       | 1/2+ |
| *<br>[I] | 2645                       | 3/2+ |

- $\Xi'_{c}$  first observed by CLEO in 1999
- $\Delta m = m(\Xi'_{c}) m(\Xi_{c}) = 107 \text{ MeV}/c^{2}$ 
  - electromagnetic decay  $\Xi'_c \rightarrow \Xi_c \gamma$



### Inclusive $\Lambda_c$ spectrum at the Y(4S)

- Spectrum for Y(4S) decays obtained subtracting the much harder  $e^+e^- \rightarrow cc$ spectrum
- Kinematic limit  $x_p = 0.47$
- Shape consistent with previous results
- We measure

 $N_{\Lambda_c}^{\rm Y} = 0.091 \pm 0.006 (\exp) \pm 0.024 (\Lambda_c BF)$ 

• *i.e.*  $(4.5 \pm 1.2)\%$  of  $B_{u,d}$  decays include a  $\Lambda_c$ 



> Data suggest a dominance of quasi-two-body decays like:

- B  $\rightarrow (\Lambda_c^{+} \bar{p}, \Lambda_c^{+} n, \Lambda_c^{+} \Delta, \Sigma_c \bar{p}) + m\pi$
- comparing with MC simulations the favorite range for the number of pions is 3 < m < 5+
- also *B* decays into 2 charmed baryons seem to contribute significantly

Fabio Anulli

# Correlated $\Lambda_c^{+} \overline{\Lambda}_c^{-}$ production

- What about baryon number conservation?
  - Measurements at high energies shows small rapidity differences between BaryonantiBaryon couples ==> "local baryon correlation"
  - if "local" correlation and two charmed baryons produced from leading *c*-quarks, we expect to see two more baryons ==> kinematically suppressed @  $E_{cm}$ ~10 Gev
  - CLEO measured  $\frac{P(\Lambda_c \Lambda_c X)}{P(\Lambda_c \overline{D}^{(*)}Y)} \approx 3.5$

▶ BABAR looks for 
$$e^+e^- \rightarrow \Lambda_c^+ \Lambda_c^- X$$
 events

- Observe 649 ± 31 events vs ~150 expected ==> ratio of ~4.2 consistent with CLEO result
- very few additional baryons observed
- > most of additional tracks are pions produced at the  $e^+e^-$  vertex ==> we measure 2.6 ± 0.3  $\pi^\pm$ /event
- > there is room for additional ~1.3 "popcorn"  $\pi^0$ /event
- 2.2 units of rapidity differences observed on average





### All indicate these are "jetty" events with long-range baryon number conservation !

### MC analysis of FFs from SIA data



Sato et al. arXiv:1609.00899

Good data-theory agreement also in this study, but uncertainties are still large

FIG. 5: Ratio of experimental single-inclusive  $e^+e^-$  cross sections to the fitted values versus z (or  $z_{\min}$  for OPAL data [32, 33]) for pion production. The experimental uncertainties are indicated by the black points, with the fitted uncertainties denoted by the red bands. For the BaBar data [40] the prompt data set is used.

## Analysis strategy

- Two analyses performed at BABAR:
  - 1.  $e^+e^- \to X + \pi\pi$  PRD 90, 052003
    - asymmetries as a function of pions z and  $p_T$
  - 2.  $e^+e^- \to X + \pi\pi/\pi K/KK$  PRD 92, 111101(R)
    - simultaneous extraction of asymmetries for  $\pi\pi$ ,  $\pi K$ , and KK pairs

Analysis strategy:

- Perform event and particle selections
- Separate into  $\pi\pi$ , *KK* and *K* $\pi$  candidate sets and subdivide into Like and Unlike charge
  - Charged data set is the combination of U and L.
- Measure azimuthal angle distributions for each set in both reference frames
  - Take the ratios of Unlike to Like and Unlike to Charged normalized distributions
  - Subtract background contributions and correct for particle misidentification

• Extract Collins Asymmetry from each set, as a function of kinematic variables

Selection of two jets topology: thrust > 0.8



- The experimental method assumes the thrust axis as  $q\overline{q}$  direction
- This is only a rough approximation

Introduces dilution of asymmetry in RF12. Correct through MC study

No dilution effect in RF0





- Simultaneous extraction of the asymmetries corrected for background (mainly charmed hadron decays, but also BB and τ+τ-) and K/π misidentification in each fractional energy interval
- Fit independently the double ratio distributions of the three selected samples KK,  $K\pi$ ,  $\pi\pi$

$$A_{KK}^{\text{meas}} = F_{uds} \cdot A_{KK}^{Collins} + \sum_{i} F_{i}^{KK} \cdot A_{KK}^{i}$$

### 1. Background sources:

- mainly from  $e^+e^- \rightarrow c\bar{c}$  events (more than 30%); smaller contribution from BB,  $\tau^+\tau^-(A_{BB}\sim A_{\tau}\sim 0)$
- construct a D\*-enhanced MC and data control samples to estimate the charm contribution
- The fractions  $(F(f)_{sig/bkg}{}^{hh})$  of hadron pairs coming from signal (uds) and background events (cc, BB,  $\tau^+\tau^-$ ) are obtained from MC simulation

$$\begin{array}{c} \mathbf{D}^{*\pm} \rightarrow \mathbf{D}^{0} \pi^{\pm}, \ \mathbf{D}^{0} \rightarrow \mathbf{K} \pi, \ \mathbf{D}^{0} \rightarrow \\ \mathbf{K} 3 \pi, \ \mathbf{D}^{0} \rightarrow \mathbf{K} \pi \pi^{0}, \ \mathbf{D}^{0} \rightarrow \mathbf{K}_{\mathrm{S}} \pi \ \pi \end{array}$$

$$\begin{cases} A_{KK}^{\text{meas}} = F_{uds}^{KK} \cdot A_{KK}^{Collins} + F_{c\bar{c}}^{KK} \cdot A_{KK}^{charm} \\ A_{KK}^{D^*} = f_{uds}^{KK} \cdot A_{KK}^{Collins} + f_{c\bar{c}}^{KK} \cdot A_{KK}^{charm} \end{cases}$$

- Simultaneous extraction of the asymmetries corrected for background (mainly charmed hadron decays, but also BB and τ+τ-) and K/π misidentification in each fractional energy interval
- Fit independently the double ratio distributions of the three selected samples KK,  $K\pi$ ,  $\pi\pi$

$$A_{KK}^{\text{meas}} = F_{uds} \cdot A_{KK}^{Collins} + \sum_{i} F_{i}^{KK} \cdot A_{KK}^{i}$$

### 2. K/ $\pi$ misidentification:

• Evaluate from MC the fraction  $(\xi_{hh}^{(hh)})$  that a given hadron pair is reconstructed as KK, K $\pi$ , or  $\pi\pi$  pair

$$A_{KK}^{\text{meas}} = F_{uds} \cdot \left( \sum_{nm} \xi_{nm}^{(KK)} \cdot A_{nm}^{Collins} \right) + F_{c\bar{c}}^{KK} \cdot \left( \sum_{nm} \xi_{nm}^{(KK)} \cdot A_{nm}^{charm} \right)$$
$$\underbrace{\xi_{\text{hh}}}_{\text{senerated hadron pairs}}^{\text{(hh)}} \leftarrow \text{reconstructed hadron pairs}$$

### 3. Solve the system of equations to extract all asymmetry parameters

20 February 2018, Stresa

Fabio Anulli

$$\begin{split} A_{KK}^{neas} &= F_{uds}^{KK} \cdot (\xi_{KK}^{(KK)} A_{KK} + \xi_{K\pi}^{(KK)} A_{K\pi} + \xi_{\pi\pi}^{(KK)} A_{\pi\pi}) + \sum_{\substack{r_{c\bar{c}} \\ r_{c\bar{c}} \\ r_$$

Fabio Anulli

### Systematic uncertainties

A large number of systematic checks were done. The main contributions come from:

- MC uncertainties
- Particle identification (PID)
- Fit procedure
- Dilution method
- E<sub>vis</sub> cut

Additional checks show negligible effects, such as:

- Beam polarization studies
- Asymmetry consistency between different data taking period
- Possible coupling between Collins and detector effect



Sum in quadrature of systematic uncertainties (absolute values)

## Use Collins FF to extract Transversity



### Collins effect in pion pair production: A vs $(z_1, z_2)$

Measurement performed by Belle (PRD78, 032011, Erratum PRD 86, 039905) and *BABAR* (PRD90, 052003) at  $Q^2 \sim 110 \text{ GeV}^2$ , and by BESIII (PRL 116, 042001) at  $Q^2 \sim 13 \text{ GeV}^2$ 





- · Significant non-zero asymmetries A12, A0 in all bins
- Strong dependence on (z<sub>1</sub>,z<sub>2</sub>) observed in all the experiments
- A<sub>UC</sub><A<sub>UL</sub> as expected; complementary informations about favored and disfavored fragmentation processes

\*PRD 93,014009(2016) Fabio Anulli