

Workshop on Fragmentation Functions

19-22 Febr. 2018, Stresa (Italy)

Marco Radici INFN - Pavia

Theory open issues

leading twist

 $S_h \leq 1/2$

			Quark polarization	
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
Hadron Polarization	U	D ₁ o Unpolarized		H_1^{\perp} \bullet - \bullet
	L		$G_{1L} \odot \bullet - \odot \bullet$	H_{1L}^{\perp} $\bullet \bullet - \bullet \bullet$
	т	D_{1T}^{\perp} • •	<i>G</i> _{1T} 💿 - 💿	$H_{1} \underbrace{\circ}_{1} - \underbrace{\circ}_{1}$ $H_{1T}^{\perp} \underbrace{\circ}_{1} - \underbrace{\circ}_{1}$

leading twist

 $S_h \leq 1/2$

		Quark polarization				
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)		
on	U	D ₁ o Unpolarized		H_1^{\perp} \bullet - \bullet		
Hadron Polarizatio	L		$G_{1L} \odot \bullet - \odot \bullet$	H_{1L}^{\perp}		
	т	D_{1T}^{\perp} • •	<i>G</i> _{1T} 💿 - 💿	$H_{1} \underbrace{\circ}^{\perp} - \underbrace{\circ}^{\bullet}$ $H_{1T}^{\perp} \underbrace{\circ}^{\bullet} - \underbrace{\circ}^{\bullet}$		

most of the time, detection of final unpolarized mesons (π , K..) \Rightarrow use only first row of table

 $S_h = 0$

leading twist $S_h \le 1/2$

data on Λ^{\uparrow} production from BELLE / COMPASS (and CERN-

 $S_{\rm h} = 1/2$

OMP.

and CERN- NA48/OPAL/ATLAS HERA-B old FermiLab)

leading twist

 $S_h \leq 1/2$

		Quark polarization				
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)		
on	U	D ₁ o Unpolarized		H_1^{\perp} \circ - \circ) Collins		
Polarizatio	L		$G_{1L} \odot \bullet \bullet \bullet \bullet \bullet$	H_{1L}^{\perp} \bullet - \bullet		
Hadron	т	D_{1T}^{\perp} • •	<i>G</i> _{1T} • - •	$H_1 \stackrel{\bullet}{\circ} - \stackrel{\bullet}{\circ}$ $H_{1T}^{\perp} \stackrel{\bullet}{\circ} - \stackrel{\bullet}{\circ}$		

			Quark polarization	
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
on	U	D ₁ Unpolarized		H_1^{\perp} δ - \circ Collins
Hadron n Polarizatio	L		$G_{1L} \odot \bullet \bullet \bullet \bullet \bullet$	$H_{1\mathrm{L}}^{\perp}$ \longrightarrow \rightarrow
	т	D_{1T}^{\perp} • •	<i>G</i> _{1T} • - •	$H_1 \stackrel{\bullet}{\circ} - \stackrel{\bullet}{\circ})$ $H_{1T}^{\perp} \stackrel{\bullet}{\circ} - \stackrel{\bullet}{\circ})$

"standard"

NLO analysis of e⁺e⁻ data for π^{\pm} , K[±] 0.1 $\leq z \leq 0.9$ Ex: JAMFF

			Quark polarization	
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
on	U	D ₁ Unpolarized		H_1^{\perp} \circ - \circ Collins
Hadron n Polarizatio	L		$G_{1L} \odot \bullet \bullet \bullet \bullet \bullet$	$H_{1\mathrm{L}}^{\perp}$ \longrightarrow \longrightarrow
	т	D_{1T}^{\perp} • •	<i>G</i> _{1T} • - •	$H_1 \stackrel{\bullet}{\circ} - \stackrel{\bullet}{\circ} $

"standard"

NLO analysis of e⁺e⁻ data for π^{\pm} , K[±] 0.1 $\leq z \leq 0.9$ Ex: JAMFF NNLO 1st: ASR15 (only π^{\pm} , no error) then NNFF1.0 ("standard" data + p)

			Quark polarization	
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
on	U	D_1 \bigodot Unpolarized		H_1^{\perp} \circ - \circ Collins
Hadron n Polarizatio	L		$G_{1L} \odot \bullet \bullet \bullet \bullet \bullet$	$H_{1\mathrm{L}}^{\perp}$ \longrightarrow \longrightarrow
	т	D_{1T}^{\perp} - •	<i>G</i> _{1T} • - •	$H_1 \stackrel{*}{\underbrace{\circ}} - \stackrel{*}{\underbrace{\circ}} \stackrel{*}{\underbrace{\circ} \stackrel{*}{\underbrace{\circ}} \stackrel{*}{\underbrace{\circ}} \stackrel{*}{\underbrace{\circ}} \stackrel{*}{\underbrace{\circ} \stackrel{*}{\underbrace{\circ}} \stackrel{*}{\underbrace{\circ} \stackrel{*}{\underbrace{\circ}} \stackrel{*}{\underbrace{\circ} \stackrel{*}{\underbrace{\circ}} \stackrel{*}{\underbrace{\circ} \stackrel{*}{\underbrace{\circ}} \stackrel{*}{\underbrace{\circ} \stackrel{*}{\underbrace{\circ} \stackrel{*}{\underbrace{\circ}} \stackrel{*}{\underbrace{\circ} \stackrel{*}{\underbrace{\bullet} \stackrel{*} \underbrace{\underbrace{\bullet} \stackrel{*}{\underbrace{\bullet} \stackrel{*}{\underbrace{\bullet} \stackrel{*}{\underbrace{\bullet} \stackrel{*} \underbrace{\bullet} \stackrel{*} \underbrace{$

"standard"

NLO analysis of e⁺e⁻ data for π^{\pm} , K[±] 0.1 $\leq z \leq 0.9$ Ex: JAMFF

NNLO 1st: ASR15 (only π^{\pm} , no error) then NNFF1.0 ("standard" data + p)

NNLO+NNLL AKSR17 (only π^{\pm} , no error, small z)

			Quark polarization	
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
on	U	D ₁ Unpolarized		H_1^{\perp} \bullet - \circ Collins
Hadron n Polarizatio	L		$G_{1L} \odot \bullet \bullet \bullet \bullet \bullet$	$H_{1\mathrm{L}}^{\perp}$ \longrightarrow \longrightarrow
	т	$D_{1\mathrm{T}}^{\perp}$ • •	<i>G</i> _{1T} • - •	$H_1 \stackrel{\bullet}{\circ} - \stackrel{\bullet}{\circ} $

"standard"

NLO analysis of e⁺e⁻ data for π^{\pm} , K[±] 0.1 $\leq z \leq 0.9$ Ex: JAMFF

NNLO 1st: ASR15 (only π^{\pm} , no error) then NNFF1.0 ("standard" data + p)

NNLO+NNLL AKSR17 (only π^{\pm} , no error, small z)

global fit DSS 2015 (π[±]) + DSS 2017 (K[±]) : e⁺e⁻, SIDIS, p-p data

collinear π FF at NLO: DSS 2015

$$D_1(z) \bullet \longrightarrow h = \pi$$

De Florian, Sassot, Epele, Hernandez-Pinto, Stratmann, P.R. D91 (15) 014035

DSS 2007 \rightarrow major update DSS 2015 (only for $q \rightarrow \pi$)

- more/better data for e+e- (BELLE, BaBar)
- SIDIS (Hermes, COMPASS)
- p-p data (STAR), also on π^-/π^+
- LHC (ALICE)
- new error analysis

Iterative Hessian (IH) + $||N|| \chi^2$ -penalty

- 973 data points, 28 parameters [0.05≤ z]
- global $\chi^2/dof \sim 2.2 \rightarrow 1.2$

collinear π FF at NLO: DSS 2015

De Florian, Sassot, Epele, Hernandez-Pinto, Stratmann, P.R. D91 (15) 014035

collinear π FF at NLO: DSS 2015

De Florian, Sassot, Epele, Hernandez-Pinto, Stratmann, P.R. D91 (15) 014035

caveat

- major improvement only for total up & down channels: rel. uncertainty ≤10% for 0.2< z< 0.8
- Compass data for SIDIS multiplicities for deuteron target only
- for other channels, improvement upon DSS 2007 only for 0.2< z< 0.5

collinear K FF at NLO: DSS 2017

Stolarski

$$D_1(z) \bullet \longrightarrow \bigcirc h = K$$

De Florian, Epele, Hernandez-Pinto, Sassot, Stratmann, P.R. D95 (17) 094019

DSS 2007 \rightarrow major update DSS 2017 for $q \rightarrow K$

talks

- final (Hermes) and new (COMPASS) SIDIS data
- Drachenberg new p-p data (STAR), also on K+/K-
 - LHC data (ALICE) on K / π
 - same error analysis as for π FF
 - 1194 data points, 20 parameters [0.1≤ z]
 - global X²/dof ~ 1.83 → 1.08

collinear K FF at NLO: DSS 2017

collinear K FF at NLO: DSS 2017

De Florian, Epele, Hernandez-Pinto, Sassot, Stratmann, P.R. D95 (17) 094019

 $T D^{K'(T)}$

collinear FF at NLO: JAMFF

$$D_1(z) \bullet \longrightarrow h = \pi, K$$

Sato, Ethier, Melnitchouk, Hirai, Kumano, Accardi, P.R. D94 (16) 114004

new fit from JAM collaboration: JAMFF (for $q \rightarrow h=\pi, K$)

- only e^+e^- data from SLAC + LEP + KEK + DESY
- 459 data for π, 391 for K [0.05≤ z≤ 0.95]
- 18 parameters for π , 24 for K
- Iterative Monte Carlo methodology
- = global $\chi^2/dof \sim 1.31 \ (\pi)$, 1.01 (K)

collinear FF at NLO: JAMFF

$$q^+ = q + \bar{q}$$
$$Q^2 = 1 \text{ GeV}^2$$

Sato, Ethier, Melnitchouk, Hirai, Kumano, Accardi, P.R. D94 (16) 114004

collinear π FF at NNLO: ASR15

$$D_1(z) \bullet \longrightarrow \bigcirc h = \pi$$

Anderle, Stratmann, Ringer, P.R. D92 (15) 114017

first extraction at NNLO: ASR15 ($q \rightarrow h=\pi$ only)

only e⁺ e⁻ data from reduced set of
 SLAC + LEP + KEK + DESY

- 288 data points [0.075≤ z≤ 0.95]
- 16 parameters
- global X²/dof : LO=0.89

NLO=0.70 NNLO=0.64

collinear π FF at NNLO: ASR15

Anderle, Ringer, Stratmann, P.R. D92 (15) 114017

collinear π FF at NNLO: ASR15

collinear FF at NNLO: NNFF1.0

$$D_1(z) \bullet \longrightarrow h = \pi, K, (\overline{p})$$

Bertone, Carrazza, Hartland, Nocera, Rojo, E.P.J. C77 (17) 516

new fit from NNPDF collaboration: NNFFI.0 (for $q \rightarrow h=\pi, K$)

- only e⁺e⁻ data from SLAC + LEP + KEK + DESY
- 1173 data points [0.02 / 0.075≲ z≲ 0.9]
- same NN method as for NNPDFx.x
- 185 parameters for a 4-layers NN with 2-5-3-1 nodes

collinear FF at NNLO: NNFF1.0

comparison at NLO: NNFF1.0 - JAMFF - DSS

– not visible in JAMFF (rigid functional form?)

collinear π FF at NNLO+NNLL: AKSR17

$$D_1(z) \bullet \longrightarrow h = \pi$$

first extraction with resummation at NNLO + NNLL : AKSR17 ($q \rightarrow h=\pi$ and small z only)

only e⁺ e⁻ data from
 SLAC + LEP + KEK + DESY

- 436 data points, 19 parameters

accuracy	χ^2	norm shift	$\chi^2/{ m dof}$
LO	1260.78	29.02	2.89
NLO	354.10	10.93	0.81
NNLO	330.08	8.87	0.76
LO+LL	405.54	9.83	0.93
NLO+NNLL	352.28	11.27	0.81
NNLO+NNLL	329.96	8.77	0.76

Anderle, Kaufmann, Stratmann, Ringer, P.R. D95 (17) 054003

collinear D* FF at NLO

Anderle, Kaufmann, Stratmann, Ringer, Vitev, P.R. D96 (17) 034028

p_T [GeV]

10⁻²

KKKS08

unpolarized TMD FF

		Quark polarization				
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)		
on	U	D ₁ Unpolarized		H_1^{\perp} \bullet - \bullet Collins		
Polarizati	L		$G_{1L} \odot \bullet \bullet \bullet \bullet \bullet$	H_{1L}^{\perp} $\bullet \bullet - \bullet \bullet$		
Hadron	т	$D_{1\mathrm{T}}^{\perp}$ • •	<i>G</i> _{1T} • - •	$H_1 \underbrace{\circ}_{1} - \underbrace{\circ}_{1}$ $H_{1T}^{\perp} \underbrace{\circ}_{1} - \underbrace{\circ}_{1}$		

 $S_h = 0$

What do we know about the P_{hT} dependence of D_1 ?

unpolarized TMD FF

- 1. Does the P_{hT} dependence change with flavor?
- 2. Does the P_{hT} dependence change with Z?
- 3. Does the P_{hT} dependence change with energy \sqrt{s} ?
- 4. Does the P_{hT} dependence change with scale Q^2 ?

unpolarized TMD FF

D₁ from unintegrated SIDIS multiplicities

$$M_N^h = \frac{d\sigma_N^h/dx \, dz \, dP_{hT}^2 \, dQ^2}{d\sigma_{\text{DIS}}/dx \, dQ^2} \approx \frac{\sum_q e_q^2 \, [f_1^q \otimes D_1^q] \, (x, z, P_{hT}^2; Q^2)}{\sum_q e_q^2 \, f_1^q(x; Q^2)}$$
$$P_{hT}^2/z \ll Q^2$$

0.008

0.003

0.013

0.020

0.055

0.032

0.1

0.21

04

D₁ from unintegrated SIDIS multiplicities

available fits

	Framework	Hermes	Compass	# points
Pavia 2013 Bacchetta et al., JHEP 1311 (13) 194	Gaussian < p _T 2> _q (z) 7 parameters no evolution	~	×	1538
Torino 2014 Anselmino et al., JHEP 1404 (14) 005	Gaussian < p _T ² > (1 parameter) only collinear DGLAP evolution N _y =A+By (y=Q ² /xs) (C)	separately	separately	576 (H) 6284 (C)
	↓ Framework of TMD evolution ↓			
EIKV 2014 Echevarria et al., P.R.D 89 (14) 074013	TMD framework, NLL level not a real fit	1 bin	(x,Q²)	(?)
Pavia 2016 Bacchetta et al., JHEP <i>1706</i> (17) 081	TMD framework, NLL level first global fit (includes DY and Z ⁰)	~	~	8156

talk Signori

D₁ from old e+e- data

- fit of TASSO, cross-check on MARKII (+ PLUTO)
- hints of p_T -broadening with Q
- power law good, Gaussian bad

caveat

- z integrated, <z>≤0.1 p_T/<z>~Q [14-44 GeV] TMD factor. broken?
- need to extend to $p_T \leq 3$ GeV to reproduce $\langle p_T^2 \rangle$
- equivalent fit with Hp ≠ TMD factorization

I. does P_{hT} dependence change with flavor?

I. does P_{hT} dependence change with flavor?

Torino 2014
(Hermes)
flavor indep.
$$\rightarrow \chi^2/dof = 1.69$$

unfav > fav $\rightarrow \chi^2/dof = 1.60$

Pavia 2016 (global) flavor indep. global χ²/dof~ 1.55

(flavor dep. in progress)

I. does \mathbf{P}_{hT} dependence change with flavor ?

2. does \mathbf{P}_{hT} dependence change with z?

2. does P_{hT} dependence change with z?

3. does P_{hT} dependence change with energy \sqrt{s} ?

Schweitzer, Teckentrup, Metz, P.R. D81 (10) 094019

Boglione, Gonzalez, Taghavi, P.L. **B772** (17) 78

Answer: it is likely, but need better e⁺e⁻ data

10⁻³ 0

4. does P_{hT} dependence change with scale Q^2 ?

Kang, Prokudin, Sun, Yuan, P.R. D93 (16) 014009

strong dependence predicted Boglione, Gonzalez, Taghavi, P.L. **B772** (17) 78

log-like behavior observed (so far..)

4. does P_{hT} dependence change with scale Q^2 ?

The matching problem in SIDIS

SIDIS unpolarized
cross section
$$\frac{d\sigma_N^h}{dx \, dz \, d\mathbf{P}_{hT}^2 \, dQ^2} \approx \sum_q e_q^2 \left[f_1^q \otimes D_1^q \right] \mathcal{H}_q(Q^2) + Y(Q^2, \mathbf{q}_T^2) + \mathcal{O}(M^2/Q^2)$$
$$\mathbf{q}_T^2 = \mathbf{P}_{hT}^2/z$$

need to match collinear (fixed-order) description such that

$$\int_0^\infty d\mathbf{P}_{hT}^2 \, \frac{d\sigma_N^h}{dx \, dz \, d\mathbf{P}_{hT}^2 \, dQ^2} = \frac{d\sigma_N^h}{dx \, dz \, dQ^2}$$

various prescriptions

Collins, Gamberg, Prokudin, Rogers, Sato, Wang, P.R. D94 (16) 034014

Echevarria, Kasemets, Lansberg, Pisano, Signori, arXiv:1801.01480

The factorization problem in SIDIS

The anticorrelation problem in SIDIS

The anticorrelation problem in SIDIS

need independent determination of $\langle \mathbf{P}_{hT}^2 \rangle$ \rightarrow extract $D_1(z, P_{hT})$ from large set of e⁺e⁻ data

e⁺e⁻ cross section

e+e- unintegrated multiplicity

		Quark polarization					
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)			
on	U	D ₁ o Unpolarized		H_1^{\perp} \bullet - \bullet			
Hadron Polarizatio			$G_{1L} \odot \bullet \bullet \bullet \bullet \bullet$	H_{1L}^{\perp} $\bullet \bullet - \bullet \bullet$			
	т	$D_{1\mathrm{T}}^{\perp}$ • •	<i>G</i> _{1T} • •	$H_1 \underbrace{\circ}_{1\mathrm{T}} - \underbrace{\circ}_{1\mathrm{T}}$ $H_{1\mathrm{T}}^{\perp} \underbrace{\circ}_{1\mathrm{T}} - \underbrace{\circ}_{1\mathrm{T}}$			

 $S_h = 0$

What do we know about the Collins function ?

e⁺e⁻ Collins effect

TMD factorization formula because of thrust axis definition

A

 $\frac{R_{\exp}^{U}}{R_{\exp}^{C}} \approx 1 + A_{0}^{e^{+}e^{-}} \left(\frac{\pi^{+}\pi^{-} + \pi^{-}\pi^{+}}{\pi^{+}\pi^{-} + \pi^{-}\pi^{+}} \right) - A_{0}^{e^{+}e^{-}} \left(\frac{\text{all}}{\text{all}} \frac{\pi\pi}{\pi\pi} \right)$ to kill false asymmetries

Unlike-sign Like-sign **Unlike-sign** Charged

Data for e+e- Collins effect

 $s = Q^2 = 112 \text{ GeV}^2$

Abe et al., P.R.L. **96** (06) 232002 Seidl et al., P.R. D**78** (08) 032011 D**86** (12) 039905(E)

 $A_{12}^{U/L/C}(z_1, z_2)$ $A_0 U/L/C (z_1, z_2)$

Lees et al., P.R. D90 (14) 052003

Lees et al., P.R. D92 (15) 111101

 $A_{12}U/L/C(z_1, z_2, P_{1T}, P_{2T})$ $A_0U/L/C(z_1, z_2, P_{1T})$

 A_{12} U/L/C (Z₁, Z₂) A₀ U/L/C (Z₁, Z₂) KK and Kπ pairs

Ablikim et al., P.R.L. **116** (16) 042001

 $A_0 U/L/C(z_1, z_2, P_{1T})$

Data for e+e- Collins effect

e+e- Collins effect

	available fit	S	both perform global fits (SIDIS + e+e-) with χ²/dof in [0.85 - 1.2]			
	Framework	Belle	BaBar A ₀ (z ₁ ,z ₂ ,P _{1T}) U / L / C	# points	BaBar A ₁₂ U / L / C	BESIII A ₀ (z ₁ ,z ₂ ,P _{1T}) U / L / C
Torino 2015 Anselmino et al., P.R.D92 (15) 114023	Gaussian, fixed width various params. for fav (z) unfav (z) = $N_{unf} D_1(z)$ only chiral-odd collinear DGLAP evolution 5 parameters	~		122	predicted	predicted
KPSY 2015 Kang et al., P.R.D 93 (16) 014009	TMD evolution in CSS schemeat NLO + NLL level* $\hat{H}^{(3)}(z) \propto D_1(z)$ fav $(z) \neq$ unfav (z) only homogeneous evo eqs. 7 parameters	~		122	*	predicted

*
$$H_1^{\perp q}(z, \boldsymbol{b}_T; Q^2) = \sum_i \left(\delta C_{q/i} \otimes \hat{H}^{(3)\,i} \right) (z, b_*; \mu_b) \, e^{S(b_*, \mu_b; Q)} \, e^{S_{\rm NP}(b_T; Q)} \, H_{\rm NP}^q(z, \boldsymbol{b}_T; Q_0^2)$$

$M \overset{\circ}{\underline{O}} \overset{\bullet}{\underline{O}} \overset{\bullet}{\underline{$

Predicting the BESI asymmetry

00

0.02

TMD evolution on Collins funct.

Collins funct. for Kaons

64 data: $A_0^{U/L/C}$ for πK and KK pairs

Torino 2016

- same p_T dependence as for π (Gaussian with fixed parameter)
- z dependence as $D_1^{q \to K}(z)$
- only non-chiral-odd DGLAP evolution of z-dependence
- 2 parameters: normalization for favored u and unfavored
- global χ^2 /dof = 0.89

favored u→K⁺ determined and positive
favored s→K⁻ undetermined (also in sign)
unfavored undetermined
because of too few data

Results / Status indine francet foreastreaments (1) in-jet

leading twist $S_h \le 1/2$

data on Λ^{\uparrow} production from BELLE / COMPASS (and CERN-

 $S_{\rm h} = 1/2$

OMP.

and CERN- NA48/OPAL/ATLAS HERA-B old FermiLab)

Access to $D_{1T} \perp$

encodes "spontaneous"/palarization of phn thr

 $\frac{1}{N} \frac{dN}{d\cos\theta_p} = 1 + \alpha P \,\cos\theta_p$

P

assuming TMD factorization, p-Be and p-p data from FermiLab can be interpreted as $P_{\Lambda} \propto \frac{f_1^q \otimes f_1^{\bar{q}} \otimes D_{1T}^{\perp q}}{f_1^q \otimes f_1^{\bar{q}} \otimes D_1^{1}}$

Anselmino, Boer, D'Alesio, Murgia, P.R. D**63** (01) 054029

caveat

dσ₀ turns out too small w.r.t. data factorization broken?

XF

∧ polarization data

encodes "spontaneous" polarization of h

extraction of $D_{1T\!\perp}$ never attempted from e^+e^- so far

ongoing attempt to interpret data in collinear factorization up to twist-3 and NLO: $P_{\Lambda} \leftrightarrow D_{T}(z)$ "intrinsic twist-3"

Schlegel, Transversity 2017

∧ polarization data

SIDIS A polarization data

new data from COMPASS on $l p^{\uparrow} \rightarrow \Lambda^{\uparrow} + X$

 S'_T

 Λ rest frame

COMPASS

Moretti, Transversity 2017

SIDIS Λ polarization data

