Inputs for discussion

FORMALISM:

* definition of the fragmentation regions - does large qT imply more than current fragmentation?
* which variables shall we use to describe the momentum fractions? (see Gunar's talk)
* matching schemes: how to estimate uncertainties associated to the matching prescription

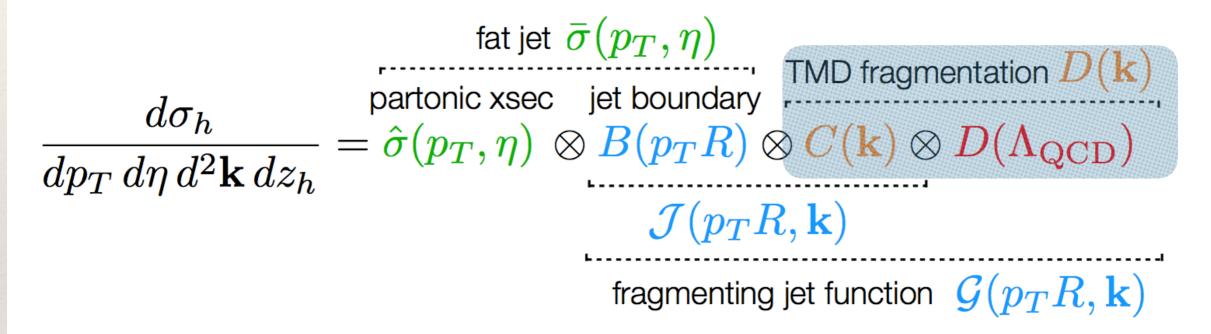
PERTURBATIVE ASPECTS:

* implementation of evolution (transverse momentum, threshold resummation, zeta prescription, ...?) * fixed-order calculations in SIDIS : is it sufficient to describe data at higher qT ? Or do we need power corrections/higher twist ?

NONPERTURBATIVE ASPECTS:

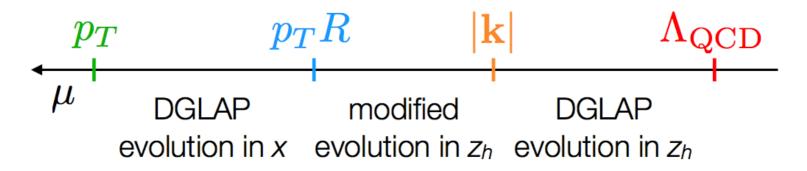
- * functional form at low transverse momentum
- * its kinematic dependence
- * its flavor dependence
- \ast nonperturbative contribution to TMD evolution

DATA :


- * impact of the new release of Compass data
- * A Fixed Target Experiment at the LHC ?
- * what can be done with the forthcoming e^+e^- data concerning TMD FFs (also including matching to high qT)
- * how well does the fixed order describes data at large transverse momentum

* ...

Summary: scales and factorization


Factorization depends on relevant hierarchy:

- Fragmentation scales: transverse momentum $|{f k}|$ and $\Lambda_{
 m QCD}$
- Jet scales: transverse momentum p_T and radius R

Evolution and resummation

Single logarithms resummed by renormalization group evolution

- $\mathcal{G}_{i \to h}(x, p_T R, \mathbf{k}, z_h, \mu)$ has standard DGLAP evolution in x
- $D_{i \to h}(z_h, \mu)$ satisfies DGLAP evolution in z_h
- $D_{i \to h}(\mathbf{k}, z_h, \mu)$ has modified all-orders evolution equation:

$$\mu \frac{d}{d\mu} D_{i \to h}(\mathbf{k}, z_h, \mu) = \sum_j \int \frac{dz}{z} \,\theta\Big(z - \frac{1}{2}\Big) P_{ji}(z, \mu) D_{j \to h}\Big(\mathbf{k}, \frac{z_h}{z}, \mu\Big)$$