

OBSERVING THE OCEAN TO SAVE THE EARTH

Juanjo Dañobeitia

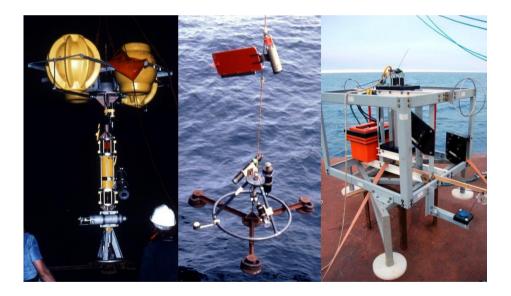
& EMSO ERIC CMO Team cmo@emso-eu.org

International Science Journalism School 26th June, 2018 – Erice (Italy)

REGIONAL FACILITIES AND TEST SITES

8 Regional Facilities and 3 Test sites located at strategic sites from the North Atlantic through the Mediterranean, to the Black Sea

2nd ERIC Forum


EMSO (European Multidisciplinary Seafloor and Watercolumn Observatory) is a strategic Marine European Research Infrastructure Consortium (ERIC), with the capacity to collect high quality environmental parameters

EMSO RF: Porcupine Abyssal Plain (PAP)

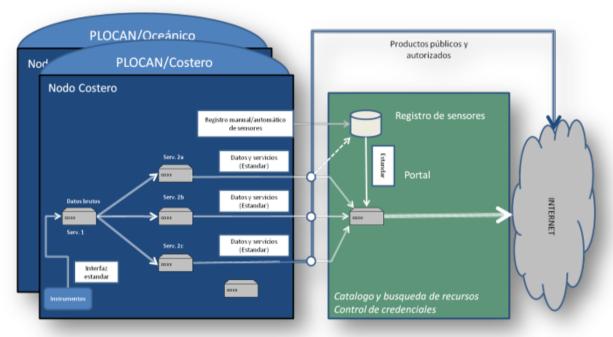
The Porcupine Abyssal Plain Sustained Observatory (PAP-SO) is a **sustained, multidisciplinary observatory** in the **North Atlantic** Distance from land: 300 miles Max water depth: 4850 m Date 1st deployment: Supported by: United Kingdom

This site has being been studied for over 30 years. It is positioned between the North Atlantic current and the Azores Currents and it is crossed by clockwise and anticlockwise swirls and eddies. Its seabed hosts a rich living community, that is sampled and photographed.

EMSO RF: Azores

Set atop an active volcano, **the Lucky Strike**, and its hydrothermal field, EMSO-Azores observatory gives unique research opportunities. The hydrothermal vent, which is a fissure in Earth's surface from which hot water come out, can be investigated with a multidisciplinary approach. The **hosted peculiar fauna and microbial communities**, the water composition and circulation are studied. Being at the Mid-Atlantic ridge, where tectonic plates diverge, the site allow to study closely tectonic and volcanic activities. Location: Mid-Atlantic ridge near Azores Distance from land: 200 NM Max water depth: 1700 m Date 1st deployment: October 2010 Supported by: France

EMSO RF: Canary Islands.-PLOCAN


ESTOC-PLOCAN Open-ocean surface, within an Intraplate active volcanism Coastal Observatory optical fiber cable down to 100 m, 4km offshore, for deeper water is planned)

Mobile Observatory (3 gliders operating around regional station, down to 1500 m depth)

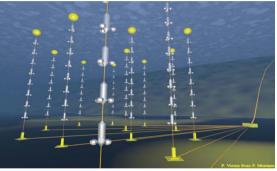
Canary Is.-PLOCAN

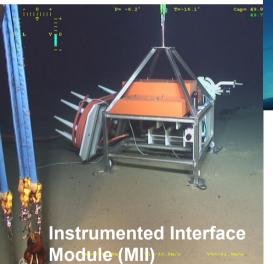
PLOCAN OBSERVATORY CSIC- Infrastructure support

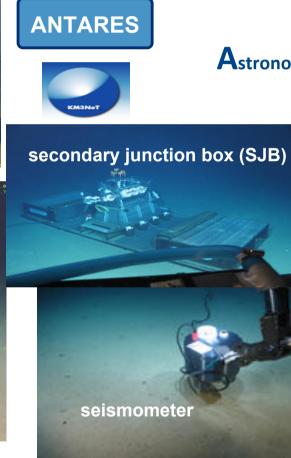
A RV Sarmiento de Gamboa well equipment and experienced in seafloor operations with deep-sea ROVS, cable deployment, and other tools and equipment.

A pool of up to 17 OBS for acoustic/seismic surveillance, volcanic instabilities or massive slides (geo-hazards)

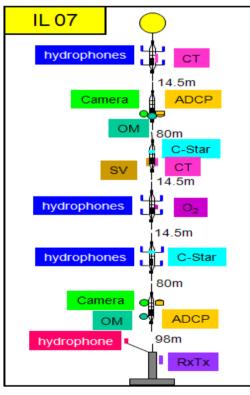
CI: Service Oriented, INSPIRE Directive and GEOSS Guidelines




EMSO RF: Iberian Margin


The area of Cadiz is very important for geohazards. It was the site where one of the worst earthquake that hit Europe occurred in 1755, coupled with a destructive tsunami. Here African and European tectonic plates converge. It is a seismic a volcanic region. It is also the site to investigate the flow that from Mediterranean move into the Atlantic and affects the deepwater circulation on global scale. The geologic and oceanographic features of this region favour the presence of highly diverse benthic communities and have also a central role in the distribution of several marine mammals and fish species. Location: Gulf of Cadiz Distance from land: 60 NM Max water depth: 3200 m Date 1st deployment: October 2010 Supported by: Portugal2008

EMSO RF: Ligurian Sea



ANTARES

Astronomy Neutrino Telescope Abyss RESearch infrastructure

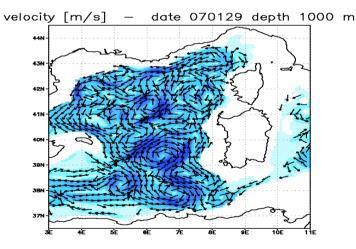
> Seismology module CTD Oxygen sensor Turbidity sensor ADCP Absolute pressure sensor Optical camera

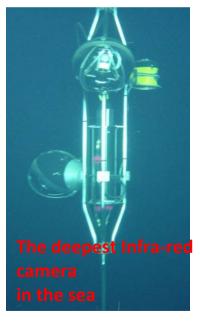
EMSO RF Ligurian Sea

BEOS,

Centre d'océanologie

- **«** Environmental Monitoring
- Seismology




0.1 0.07

0.05

0.02

0.01

EMSO nodes: Western Ionian Sea

- **INFRASTRUCTURE NEMO-SN1 seafloor observatory**, cabled to laboratory in the harbour of Catania by electro-optical cable
- **OPERATING IN REAL TIME SINCE 2005** Integrated with land-based networks by transmitting real- time data to National Seismological Service Centre in Rome; Test site for realisation of the underwater neutrino telescope

RESEARCH Geohazards, tsunami, climate change, bioacoustics and ambient noise. **PREVIOUS/RECENT ACTIVITIES** LAMS and SIRENA FESR projects (national). GNDT-SN1 (national). PEGASO project (Structural funds). ESONET demo missions (LIDO, LIstening to the Deep Ocean environment). GENESI-DEC, SCIDIP-ES (FP7 infrastructures), KM3NET, TRANSFER

Stand-alone 2002-2003 - Cabled 2005-2008 & 2012-2013 real-time data

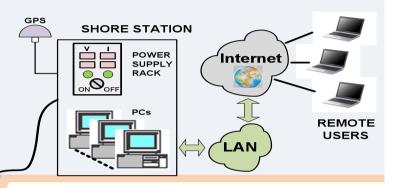
WLJILNN IVNIAN JLA

Geo-hazards

(earthquakes, tsunamis, volcanic activity)

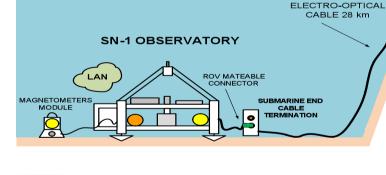
Bio-acoustics

(mammal tracking) Oceanography

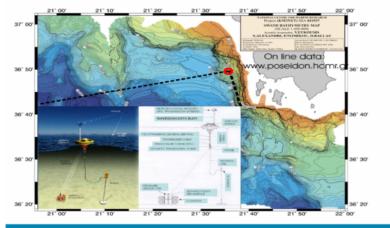

(e.g., deep water circulation, current intensity and direction, temperature, salinity)

NEMO-SN1 concept

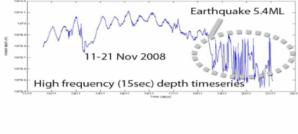
Western Ionian Sea



🛹 Payload:


seismological, geomagnetic, gravimetric, oceanographic, hydro-acoustic, bio-acoustic

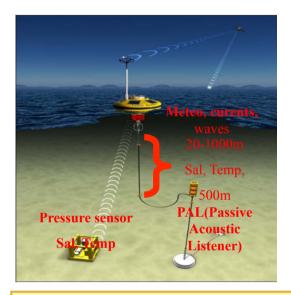
- Rationale for the mission:
 - i) characterise ambient noise (marine mammal sounds, environmental/anthropogenic sources);
 - ii) study earthquake and tsunami generation in Western Ionian Sea
- Control Algorithm runs in the Shore Station



EMSO nodes: Hellenic Arc

Pressure (tsunami) sensor

INFRASTRUCTURE Cabled system NESTOR, Stand alone Poseidon Pylos and Poseidon E1-M3A (35066'N, 24099'E), Proposed drilled observatory BUTT


RESEARCH Geohazards, tsunami, climate change, bioacoustics and ambient noise, biogeochemical fluxes, benthic-pelagic interactions; benthic respiration; biogeochemical fluxes; photography-based ecology; seabed methane fluxes; oil and gas industry activities

PREVIOUS/RECENT ACTIVITIES EuroSITES, IODP, HERMES-HERMIONE, SEAHELLARC, TRANSFER, KM3NET Continuity of stand-alone observatory over to 2014.

FUTURE ACTIVITIES Implementation of a new cabled observatory within the frame of EMSO (EMSO-Hellenic) near Poseidon-Pylos site (about 15km from shore and in 1600m depth) with equipment according to ESONET standards. Project funded by the Greek government (EMSO contribution).

Estimated budget 3.7MEuro (2012-2015).

- 1650m depth

-15 km fiber optic Cable connection to Methoni town

- Real-time data transmission
- Implementation 2012-15

-Initial budget for construction 3.7 M€

EMSO nodes: Black Sea

Images from shallow-waters tests – Courtesy by INGV

DISTRIBUTED ORGANISATION MODE

EMSO ERIC provides harmonized integration, operation and development of Regional Facilities

ERIC

It will increase visibility, capacity and research, supported by a distributed strategy, offering integrated services to a broad range of users

ERREARCH INFRASTRUCTURE CONSORTIUM

Observing the ocean to save the earth

Juanjo Dañobeitia ^(1, 2), Paolo Favali ^(1,3), Laura Beranzoli ^(1, 3), Mairi Best ^(3,4), Jérôme Blandin ⁽⁵⁾, Joaquin Hernandez-Brito ⁽⁶⁾, Mathilde Cannat ⁽⁷⁾, Andrew Gates ⁽⁸⁾, Maria I. Fredella ⁽¹⁾, Aleardo Furlani ⁽¹⁾, Paola Materia ^(1,3) George Petihakis ⁽⁹⁾, Henry Ruhl ⁽⁸⁾, and EMSO ERIC CMO Team cmo@emso-eu.org

MISSION

To establish a comprehensive and smart sensor system in water column, seafloor, and sub-seafloor environments as part of the integrated and sustainable organization EMSO ERIC

This distributed infrastructure provides HQ data and knowledge to illuminate major environmental processes to understand the complex interactions among the geosphere, biosphere and hydrosphere

COUNTRY	REPRESENTING ENTITY		
FRANCE	IfremerL'Institut Français de Recherche pour l'Exploitation de la MerCNRSCentre National de la Recherche Scientifique		
GREECE	HCMR Hellenic Centre for Marine Research		
IRELAND	MI Marine Institute		
ITALY Host Country	INGV Istituto Nazionale di Geofisica e Vulcanologia		
PORTUGAL	FCT Fundação para a Ciência e a Tecnologia		
ROMANIA	GeoEcoMar National Research and Development Institute for Marine Geology and Geoecology		
SPAIN	PLOCAN Plataforma Oceánica de Canarias		
UK	NOC National Oceanography Centre		

Landscape of the European Research Infrastructures in the Environmental sector EMSO ERIC essential scientific objectives are to observe, in real time and in the long term, key environmental processes related to the interaction between the geosphere, the biosphere and the hydrosphere.

EMSO facilities require, in the medium and long term, constant technological interventions and enhancement; EMSO members are committed to ensure the assistance of European oceanographic vessels.

GLOBAL LANDSCAPE

Socioeconomic benefit of the Ocean Observatories

EMSO represents capacity to address Societal Benefits of Ocean observatories

Scope

Increasing demand of HQ data due improvements in technology, communications data storage, online information, etc.

Ocean data are valued

Science

- Constant Improving scientific understanding of the oceans;
- A Better understanding of the ecosystem benefits of the oceans;
- A better understanding of the role of the oceans in the overall earth system

Environmental policies

- Formulation of policies
- monitoring of policy compliance and effectiveness
- regulate ocean uses

Technology

Testing and demonstration marine operations

emso

ERIC

- Sensor and platform development
- Massive data storage

Industry & Innovation

- support operational needs
- Consultancy & management, commercialization, partnerships, technology transfer
- met ocean information needs of commercial maritime activities and operations.

Oceans play a crucial role in human wellbeing

- Degradation and loss of biodiversity impacts marine resource exploitation
- Ocean circulation affects climate change
- Natural hazards such as tsunamis from earthquakes and volcanic eruptions impacts

human life

WHY

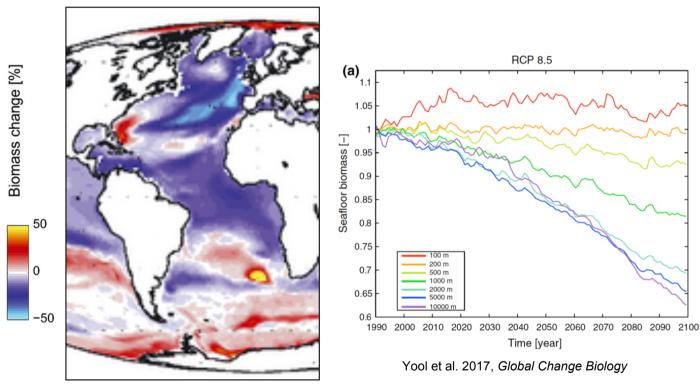
OBSERVE

THE DEEP

SEA?

EMSO ERIC MISSION

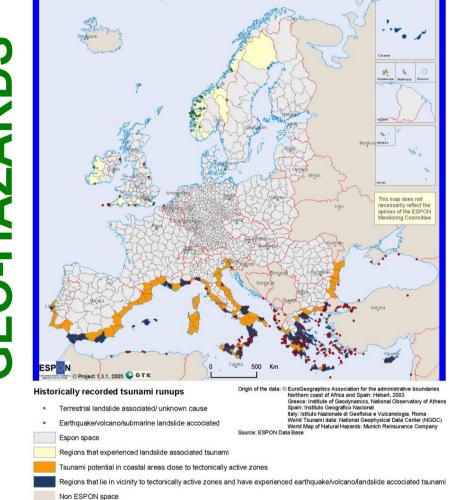
Support investigations in:

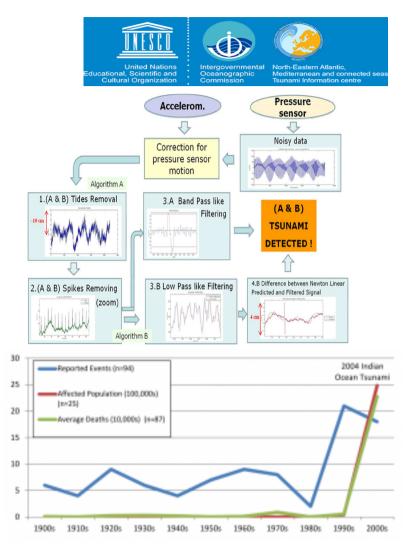

Research Infrastructure Challenges

emsc

To fulfil European societal scientific demands targeted in the EU's H2020 Blue Growth Strategy

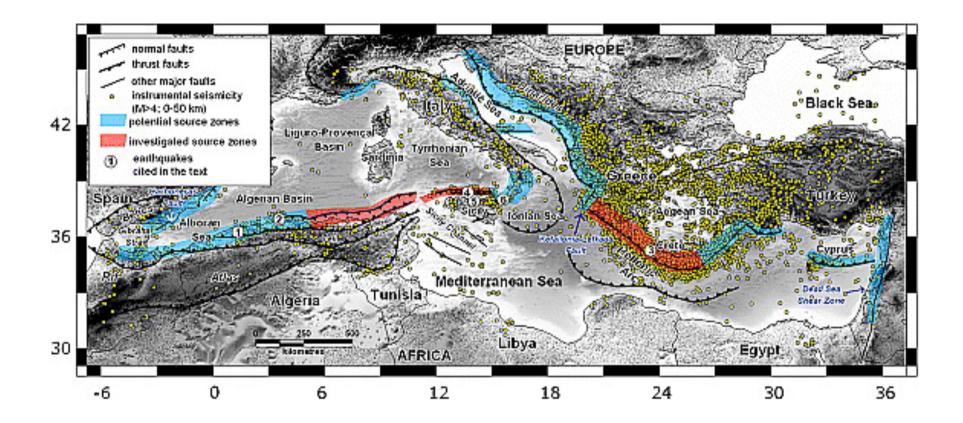
ECOSYSTEMS AND CLIMATE

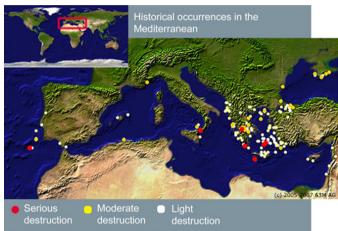



 Global warming is not just an environmental disaster but an economic one as well. "If we do nothing, if we do business as usual, by 2100 the median low income country will lose 9 per cent of its GDP. (IMF Chief Economist Maurice Obstfeld)

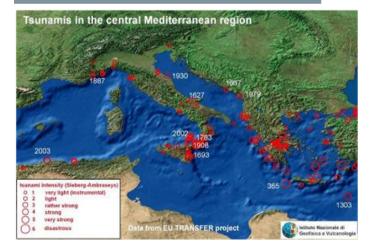
 Ocean acidification will cost the world economy more than \$1 trillion annually by 2100, according to the <u>U. Nations Convention on</u> <u>Biological Diversity</u>

Jones et al. 2014 Global Change Biology



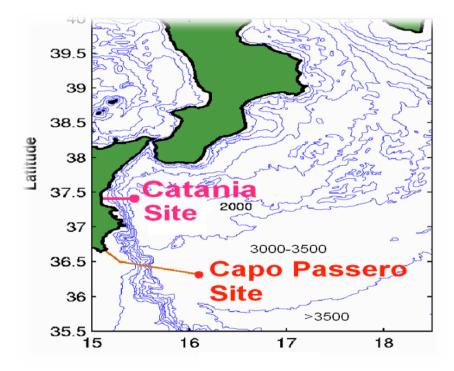

Tsunami events affecting human populations by decade

GEO-HAZARDS



Tectonic sketch of the Mediterranean basin, after Papadoupoulus, 2001

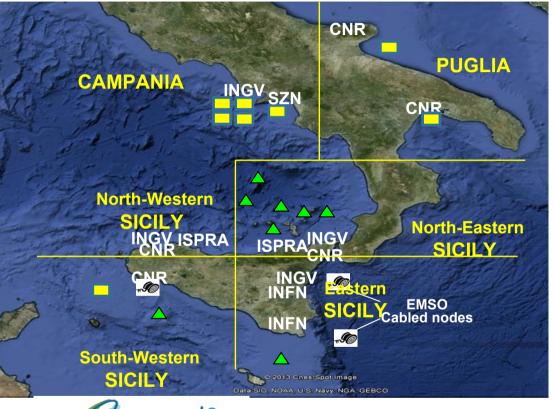
HISTORICAL TSUNAMIS IN THE MEDITERRANEAN BASIN


Dots show epicenters of the earthquakes that caused tsunamis.

YEAR	LOCATION	CASUALTIES	SOURCE	K (max 12)	RUN UP Height (cm)	SHORT DESCRIPTION	
1410 BC	Santorini	Unknown	Volcanic			devasted Santorini & Coast	
						of Crete devastated Malian coasts	
426 BC	Maliaku s Gulf	Unknown	Earthquake	8		and Euboean Gulfs	
226 BC	Rhodes	Unknown	Earthquake			Destroyed Colossus of Rhodes.	
79 AD	Bay of Naples	>10,000	Volcanic			destroyed Pompeii & Herculaneum	
1169	Strait of Messina	Unknown	Earthquake	8			
1303	Crete	thou sand s	Earthquake	10			
1343	Tyrrhenian Sea		Earthquake			destroyed Amalfi Coast	
1343	Maramara Sea	Unknown	Earthquake	8	200		
1650	Santorini	Unknown	Volcanic	10	2000		
1680	Alboran Sea	70	Earthquake			severely affected the city of Málaga,	
1693	Catania	60000	Earthquake	7		destroying at least 70 towns and citie	
1748	V. Gulf of Corint	Unknown	Earthquake	9	1000		
1755	Lisboa	> 50000	Earth 8,5 Mw	>10	5000		
1783	Calabria	50000	Earthquake	9	900		
1817	Gulf of Corinth,	Unknown	Earthquake	9	500		
1908	Strait of Messina	>100,000	Earthquake	10	1300		
1956	Cyclades	few 3	Earthquake	9	1500		
1990	Eastern Sicily	18	Earthquake				
2002	Stromboly	0	Volcanic/Lan dslide	7	900		
2003	Balearic island	0	Earthquake				
Reference	References; Ambraseys (1962), P = Papadopoulos (2001), TM = Tinti and Maramai (1996) and Tinti et al. (2004).						

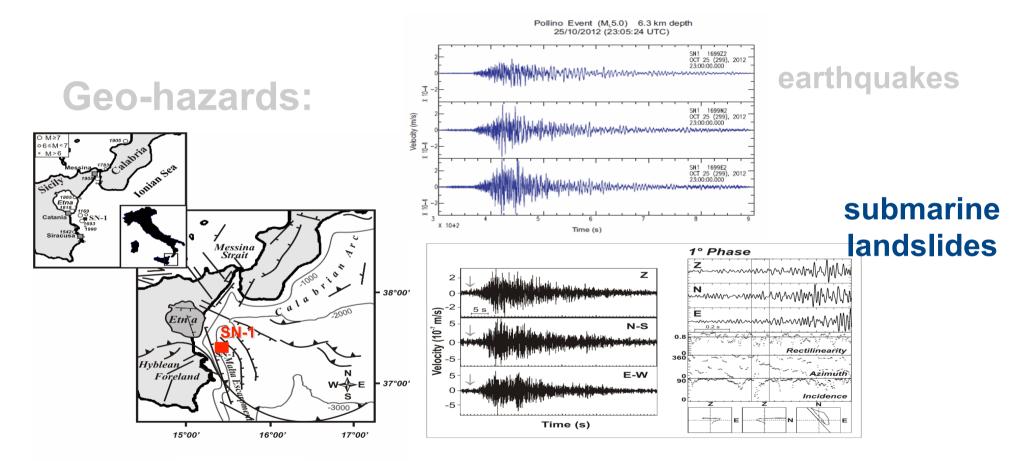
EMSO nodes: Western Ionian Sea

Cabled observatories



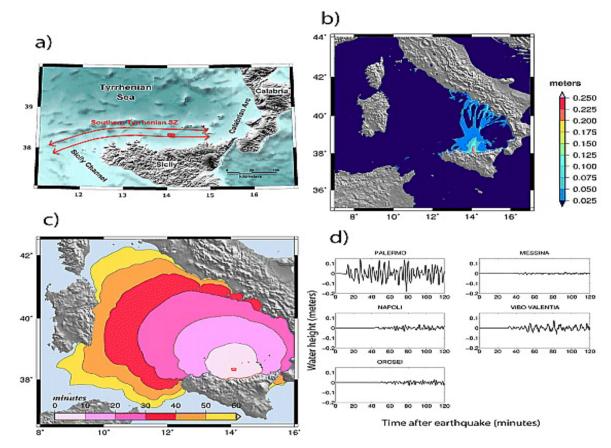
North-eastern Sicily (2100m bsl)

South-eastern Sicily (3500m bsl)

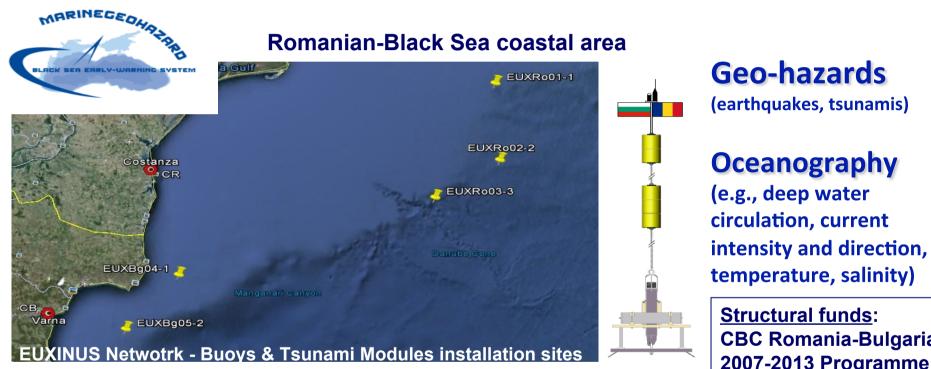


EMSO-MedIT in the context of EMSO and EMSO-Italy

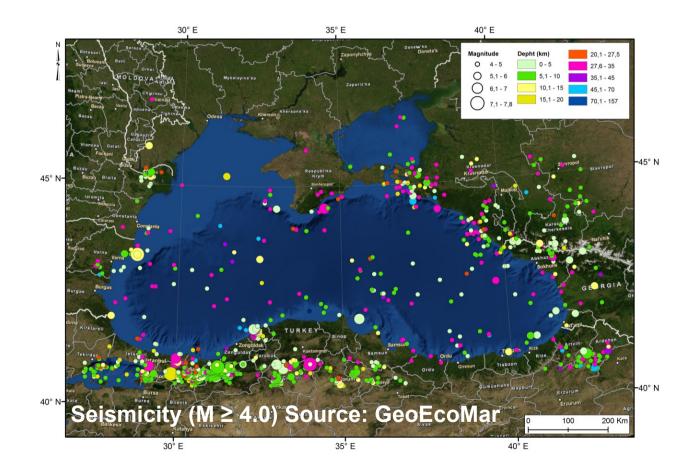
	Fixed Infrastructures
,SO	Cabled infrastructures
Δ	Relocatable infrastructures



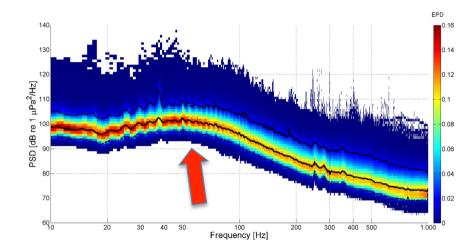
EMSO seismic data records


Western Ionian Sea

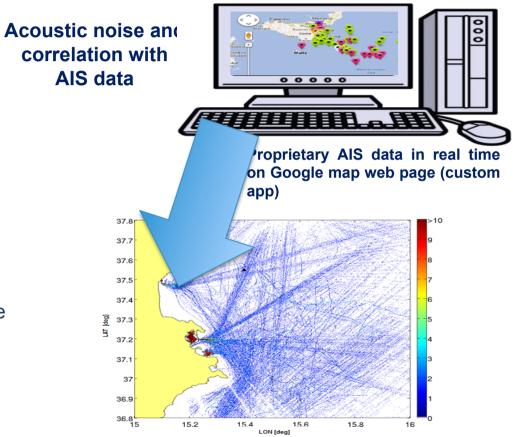
Earthquake-generated tsunamis in the Mediterranean Sea: Scenarios of potential threats to Southern Italy


Earthquake-generated tsunamis in the Mediterranean Sea: Scenarios of potential threats to Southern Italy, Volume: 113, Issue: B1, First published: 09 January 2008, DOI: (10.1029/2007JB004943)

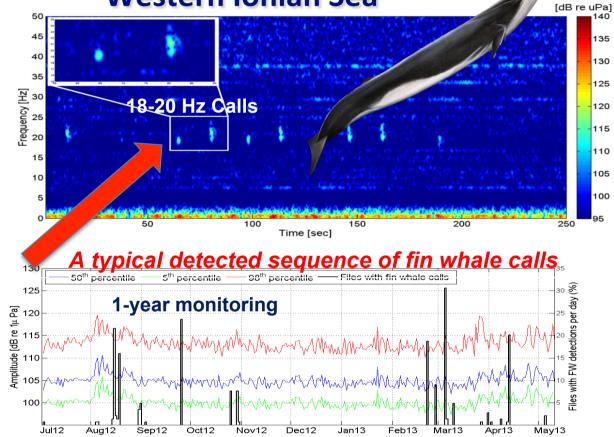
EMSO nodes: Black Sea

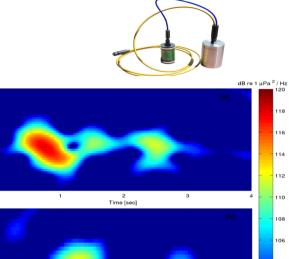

Joint regional early-warning system for protection of local communities, environment and assets within the cross-border area, from consequences of natural marine geo-hazards Structural funds: CBC Romania-Bulgaria 2007-2013 Programme Period of implementation: December, 2010 - June, 2013 Total value: 6,5 M€

EMSO RF: Black Sea seismicity



Noise distribution showing average PSD (power Spectral Density) Up to about 70 Hz, the median of the average PSD often > 100 dB re 1 μ Pa2/Hz.


European Marine Strategy

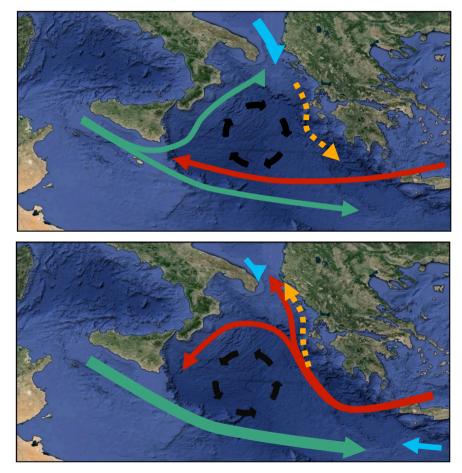


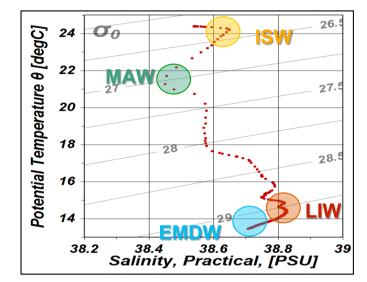
Western Ionian Sea

Marine mammals acoustic detection

Western Ionian Sea

135

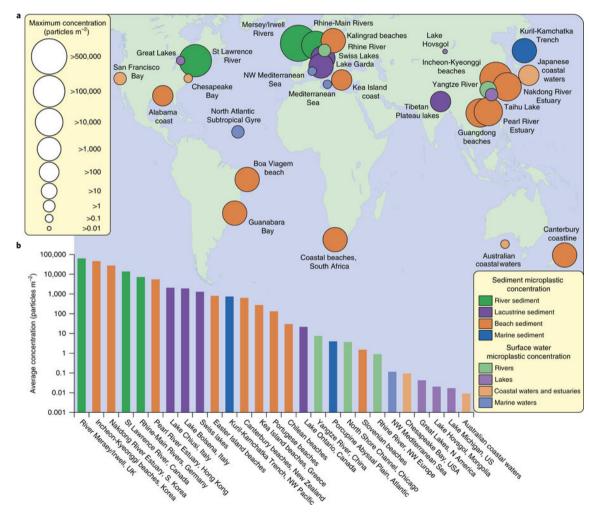

Fin whale detection using data from hydrophone installed on NEMO-SN1. (a) type A or "classic pulse" and (b) type B or "back-beat" are here showed in detail. [picture from Sciacca et al. (2015) Annual Acoustic


2 Time [sec]

PLOS ONE | DOI:10.1371/journal.pone.0141838 November 18, 2015

Global change and Ocean circulation 🔊 NIGK OCEAN Water Column (mooring) - WC-SN1 Physical and biogeochemical parametres emsodit Phase 2 implemented March 2016 EMSO Cabled nodes INFN WC-SN1 Eastern SICILY 2013 Cnes/Spot Image O. NOAA, U.S. Navy, NGA, GEBCO Phase 1 15.00 38.950 384 m depth 14.75 38.920 > C 14.75 38.890 implemented [©] 14.25 38 860 8 14.00 38.830 March 2015 **Temperature** Salinity 890 n 13.90 38.820 900 m depth _______38.805 > ତ୍ର 13.80 ତ୍ର 13.70 38.790 [©] 13.60 - 38.775 0 13.50 38.760 13.65 38.760 1400 m depth___38.755 ≿ **ပ** 13.60 13.55 38.750 J.B. ° 13.50 38.745 ທີ 1890 n 13.45 38.740 1990 m 13.65 38.760 1900 m depth_38.755 ≧ ក 13.60 13.55 38,750 38.745 0 [©] 13.50 13,45 13,740 19 Mar 15 09 Apr 15 30 Apr 15 21 May 15 11 Jun 15 02 Jul 15 24 Jul 15 14 Aug 15 04 Sep 15 25 Sep 15 16 Oct 15 07 Nov 15 28 Nov 15

Global change and Ocean circulation



Modified Atlantic Water (MAW) Levantine Intermediate Water (LIW) Eastern Mediterranean Deep Water (EMDW) Ionian Surface Water (ISW)

Bios decadal inversion

PLASTICS

'current estimate for the number of particles in the ocean – is a major underestimate.'

Hurley et al. 2018, Nature Geoscience

Micro plastics are highly bioavailable to marine organisms, either through direct ingestion, or indirectly by trophic transfer from contaminated prey (Sarah E.Nelms etal., 2018, Environ. .Pollut.)

PLASTICS

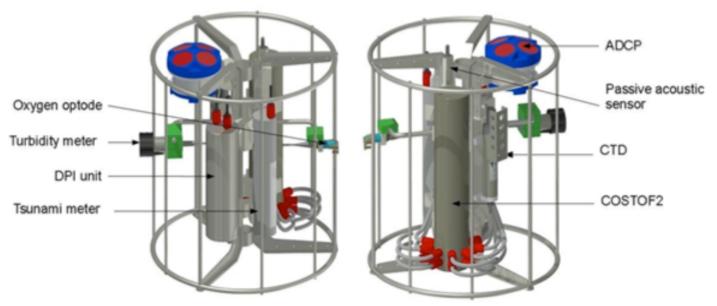
we are dumping around 10 tons of plastic to the oceans every year, ESA is already indirectly capable of measuring the large distribution of plastic, we are in the way to implement smart sensors capable to detect the "in situ" the volume of **microplastics** in the ocean

Henderson Island is a tiny, uninhabited island in the middle of the Pacific Ocean, 4,000 km from major population centers. It is half the size of Manhattan, more than 19 tons of garbage pollute its white sand beaches.

SUSTAINABLE DEVELOPMENT GOALS

UN Decade of Ocean Science for Sustainable Development (2021-2030)

SDG 14


	Targets
14.1	Reduce marine pollution
14.2	Protect marine and coastal ecosystems
14.3	Address ocean acidification
14.4	Address overfishing
14.5	Conserve at least 10 per cent of coastal and marine areas
14.6	Prohibit certain forms of fisheries subsidies
14.7	Increase economic benefits to Small Island developing States
14.a	Increase scientific knowledge
14.b	Access for small-scale artisanal fishers to marine resources and
	markets
	Enhance the conservation and sustainable use of oceans and their
HE GLOBAL GOALS	resources

ENGINEERING & LOGISTICS

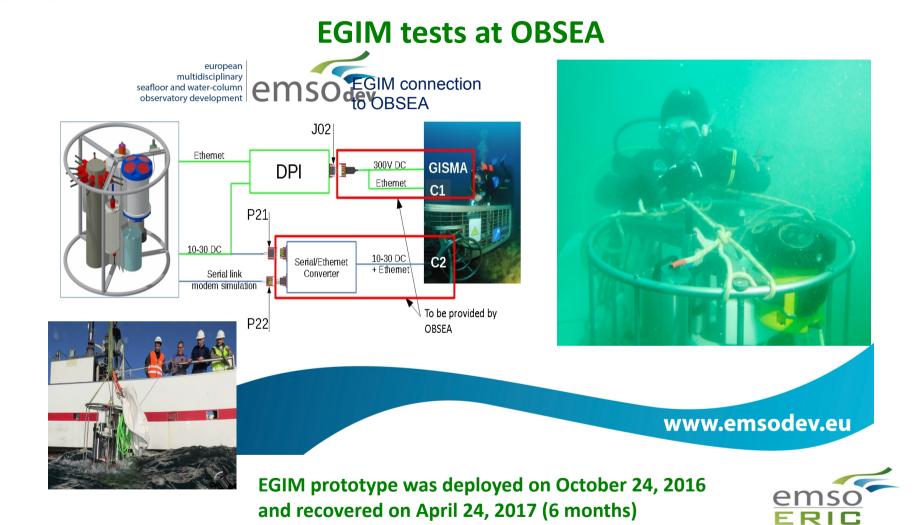
EGIM measurements:

- Temperature
- Conductivity
- Pressure
- Dissolved O₂
- Turbidity
- Ocean currents
- Passive acoustics

The development of EGIM is an example of the engineering services that EMSO can provide.

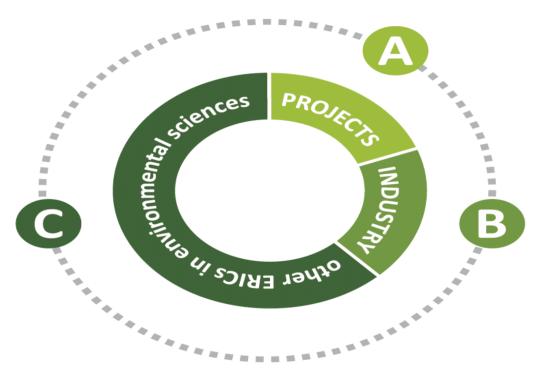
EMSO implementation and operation: DEVelopment of instrument module

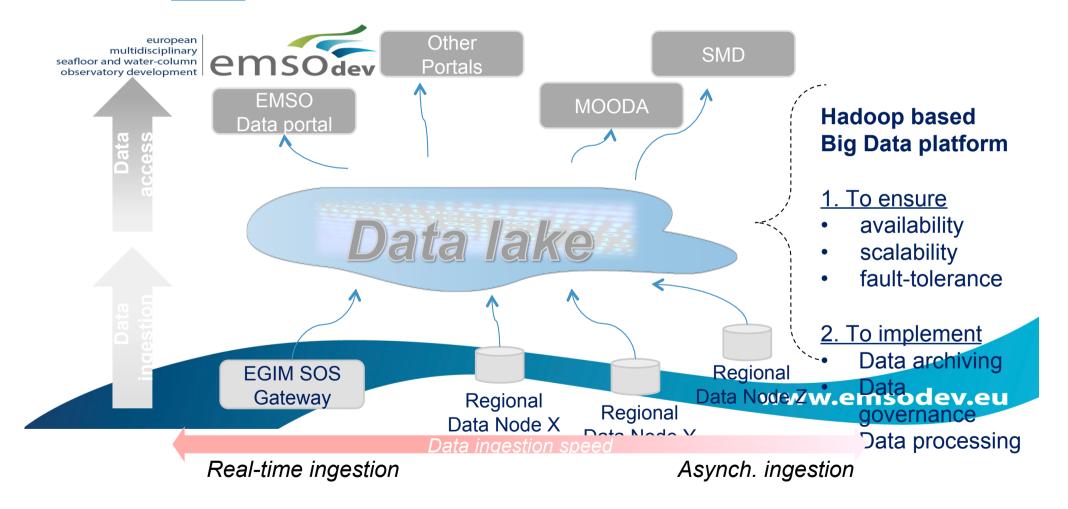
EGIM


EMSO Generic Instrument Module

is envisioned to ensure increased coordination, integration, interoperability and standardisation across sites and disciplines

Core variables captured by the EGIM and their cross-disciplinary application


Variable	Geosciences	Physical Oceanography	Biogeochemistry	Marine Ecology
Temperature	х	х	х	х
Conductivity	Х	х	х	х
Pressure	х	X	х	x
Dissolved O ₂	х	X	X	x
Turbidity	х	X	Х	х
Ocean currents	x	X	x	x
Passive acoustics	х			x



- A
- **PROJECTS** such as EMSODEV, COOP +,AtlantOS, NeXOS and JERICONEXT to exchange information and develop synergies on common issues (common forum for marine technology; metrology for marine sensors; carbon flux and climate change).
- B
- INDUSTRY to improve/develop the technology behind EMSO ERIC and to proffer the possibilities offered by the network. (use of EMSO ERIC nodes as test beds for industrial equipment, methods or services)
- C
- **INFRASTRUCTURES** such as ENVIRONMENTAL ERICs in environmental sciences (e.g., ICOS, EURO-ARGO, LIFEWATCH,) and other world wide infrastructures (e.g., OOI, ONC, IMOS) to reach a global monitoring for marine environment.

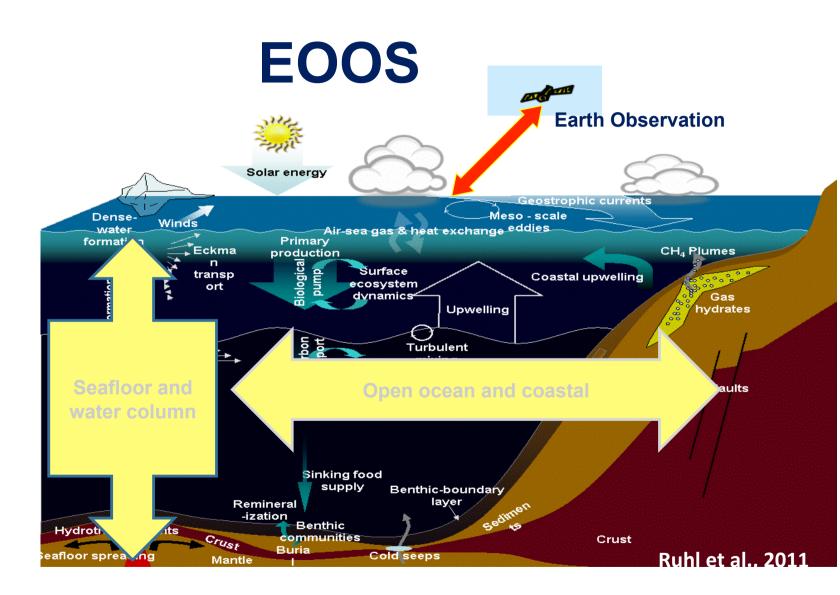
DMP-Data Management Platform

POLICY MAKERS

SOCIETY WIDER PUBLIC To make **world-class science** with a new multi-inter-disciplinary approaches supported by the infrastructure. To offer **HQ data products and opportunities** for collaboration.

To make aware on the need of increasing the synoptic/aggregated information on marine health and for an efficient exploitation of marine resources through long-term observations.

To make aware of the international cooperation guaranteeing a support for **a sustainable Blue Growth.**


To increase the awareness of the marine domain on Earth good health and global processes (such as Climate Change).

To attract the youngest generation to a scientific carrier for their future. To highlight the importance of European Union funds to finance the marine research in order to help a sustainable future.

What's the Future ?

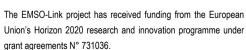
An Integrated and Sustained European Ocean Observing System (EOOS)



In line with: **"Support the** development of a truly integrated and sustainably funded **European** Ocean **Observing** System..."

> Ostend Declaration 2010

SUMMARY


- The <u>development of Distributed RI at seafloor and water column of</u> EMSO nodes (cabled or stand alone) provides a unique European operational capacity in collecting scientifically relevant datasets
- The use EGIM sensor developed within EMSO implements, common, standardized technologies based on architectures and interoperability, enabling EMSO observatories to serve the science community, industry and governmental organizations as well as other key stakeholders and even similar infrastructures
- EMSO ERIC will provide information and knowledge impact
- Climate Change & Ocean acidification
- · How warming seas are forcing fish to seek new waters
- Appraisal of Economic Impact of Algae Blooms
- Mitigation of Natural disasters (i.e., submarine volcanoes, submarine landslides, earthquakes, tsunamis)
- Copernicus services, marine safety, marine resources, climate forecasting, etc.

Thank you for your attention

www.emso-eu.org

