

L'aggiornamento del rivelatore RICH dell'esperimento LHCb

LUCA MINZONI A NOME DEL "LHCB RICH UPGRADE GROUP"

UNIVERSITÀ DEGLI STUDI DI FERRARA - INFN SEZIONE DI FERRARA

6 APRILE 2018

IFAE MILANO

L'esperimento LHCb al CERN di Ginevra

LHC: il più grande e potente acceleratore di particelle del mondo

 Anello lungo 27 km, energia del centro di massa fino a 13 TeV

LHCb: uno dei quattro maggiori esperimenti che lavorano su LHC

• ATLAS, CMS, LHCb e ALICE

Scopo di LHCb: studiare decadimenti rari di quark b e c

Luminosità limitata a 4·10³²cm⁻²s⁻¹

• Il doppio del valore di design

Frequenza di acquisizione dati limitata a 1 MHz

I rivelatori RICH di LHCb

Due rivelatori RICH (Ring Imaging Cherenkov) in LHCb: RICH1 e RICH2

Identificazione di particelle cariche nell'intervallo 2-100 GeV/*c*

 $\,\circ\,$ Separazione tra π , K e p

Mezzo radiatore: gas

• C₄F₁₀ (RICH1) e CF₄ (RICH2)

Fotorivelatori Ibridi

 Finestra di quarzo, fotocatodo, tubo a vuoto, matrice di pixel silicio

Elettronica di acquisizione dati incorporata e limitata a 1 MHz

L'aggiornamento di LHCb e dei rivelatori RICH

Inizio aggiornamento: 2019

Luminosità ~ $2 \cdot 10^{33}$ cm⁻²s⁻¹ (5 volte quella attuale)

Frequenza di acquisizione dati di 40 MHz
Rimozione di L0 e installazione trigger software

Nuova elettronica di acquisizione adeguata alle nuove prestazioni

LHCb RICH

Attuali fotorivelatori ibridi (1 MHz) sostituiti con fototubi multi-anodo (Multi-anode Photo Multiplier Tube, MaPMT)

Nuova catena elettronica di acquisizione dati accoppiata ai MaPMTs

 Maggiore luminosità comporta aumento dell'occupanza media su fotorivelatori
 Solo per RICH1: lunghezza focale degli specchi sferici estesa per aumentare dimensioni anello Cherenkov e diminuire occupanza

Fototubi ed elettronica dei RICH aggiornati saranno assemblati in Celle Elementari (Elementary Cell, EC)

- MaPMT (Hamamatsu) inseriti in base-board
- CLARO8 ASIC chip installato su apposite Front-end Board (FEB)
- Back-board interfaccia FEB con scheda digitale basata su FPGA

Le EC saranno assemblate in moduli 4x1 chiamati Photon Detector Modules (PDMs)

Multianode Photo Multiplier Tube (MaPMT) a 64 canali

- Matrice di pixel 8x8
- Tensione di lavoro 1000 V, G=10⁶
- Amplificazione a 12 dinodi

Hamamatsu R13742 (1") in RICH-1 e RICH-2

Hamamatsu R13743 (2") nelle zone esterne a bassa occupanza in RICH-2

Due tipi di celle: tipo R (R13742) e tipo H (R13743)

- R: 2x2 MaPMTs di tipo R
- H: 1x1 MaPMTs di tipo H

Scudo magnetico in mu-metal

CLARO8 ASIC amplificatore/discriminatore a 8 canali progettato per la rilevazione del singolo fotone usando gli MaPMTs

- $^\circ\,$ Tecnologia CMOS 0.35 $\mu{
 m m}$
- Acquisizione a 40 MHz (recupero < 25 ns)
- Consumo ~1 mW/canale
- Soglia impostabile (6 bits)
- Guadagno impostabile (2 bits)
- Registro a 128 bit protetto con TMR

Il prototipo del nuovo RICH: test su fascio

Test a Prevessin (CERN), linea H8 North-Area

Celle elementari complete "R" e "H"

Supporti mobili con raffreddamento a liquido

Mezzo radiatore: lente piano-convessa di vetro ottico (N-BK7)

Scatola di polipropilene, isolamento termico e ottico

Atmosfera di N2 per rimuovere umidità

Interfaccia grafica per monitoraggio in tempo reale

Calibrazione delle EC: scan di impulsi

Canale impostato a soglia fissata (0-63)

Treno di impulsi con la stessa ampiezza, si registra la risposta del canale, si aumenta ampiezza \rightarrow Curva S

Parametri di interesse: punto di transizione, μ , e larghezza della curva S, σ

• Funzione degli errori

Test per verificare la linearità di ogni canale

- Studio del punto di transizione e della sua dipendenza dalla soglia applicata
- $\,\circ\,$ La larghezza σ è associata al rumore del canale

RO

Calibrazione delle EC: scan di soglia

Segnale iniettato costante, soglia canale varia (0-63)

Distribuzione integrale dello spettro d'impulso del canale

Parametri di interesse

- Piedistallo (rumore elettronico)
- Picco di singolo fotone
- Valle o minimo

Soglia del canale impostata nella valle per miglior discriminazione possibile segnale/rumore

Modifiche all'ottica di RICH1

Raggio di curvatura degli specchi sferici aumentato per ridurre l'occupanza su fotorivelatori

• Aumento lunghezza focale

Piano dei fotorivelatori allontanato dalla linea di fascio

 Minor aberrazione negli specchi sferici, miglior risoluzione sull'angolo Cherenkov

Interventi compatibili con le attuali dimensioni di RICH1

Conclusioni

LHCb subirà interventi di aggiornamento considerevoli

Aumento luminosità fattore 5

• Rimozione trigger LO, frequenza di acquisizione dati da 1 MHz a 40 MHz

Apparato di fotorivelazione dei rivelatori RICH smantellato e ri-assemblato con nuovi componenti: Celle Elementari

• Fototubi a multi anodo (MaPMT)

• Chip CLARO8

Prototipo funzionante testato con successo su fascio

• Celle "R" e "H"

• Procedure di calibrazione delle EC per singolo canale

Cambiamenti ottica di RICH1

Extra slides

Test di irraggiamento su CLARO8

Il pannello delle Celle Elementari sarà posto lontano dal fascio, ma verrà colpito da radiazione

CLARO8 deve essere robusto e resistere ai Single Event Upset (SEU) e Single Event Latchup (SEL)

- SEU: uno o più bit del registro vengono cambiati da radiazione incidente, si corregge automaticamente
- SEL: evento di sovracorrente, il chip deve essere spento e riacceso

Test su ioni a UCL (Louvain-La-Neuve) e LNL (Legnaro)

Test con protoni a IRRAD e LNL (Legnaro)

Test a CHARM

Calibrazione delle EC: funzioni di Fit

$$f_{DAC}(x) = \frac{par[0]}{2} \{ erf(\frac{x - par[1]}{par[2]}) + 1 \}$$

$$f_{th} = par[6] \{ \frac{1}{2} P(0, par[0]) erfc[\frac{x - par[3]}{par[4]}]$$

$$+ \sum_{n=1}^{3} \frac{1}{2} P(n, par[0]) erfc[\frac{x - npar[1]}{par[2]\sqrt{n}}] + par[5] \}$$

$$ROOT$$

$$An Object-Oriented Data Analysis Framework$$

