Risultati recenti dell'esperimento Borexino: spettroscopia di neutrini solari dalla catena pp

IFAE 2018 - Milano

Davide Basilico

UniMi e INFN Milano

UNIVERSITÀ DEGLI STUDI DI MILANO

Istituto Nazionale di Fisica Nucleare

Schema della presentazione

1. I neutrini solari

2. Borexino

3. Risultati recenti e implicazioni

Neutrini solari

- Reazioni di fusione nucleare \rightarrow emissione di neutrini
- "Fotografia" dell'interno del Sole
- Catena pp: dominante nel Sole (99%)

Neutrini solari

- Reazioni di fusione nucleare \rightarrow emissione di neutrini
- "Fotografia" dell'interno del Sole
- Catena pp: dominante nel Sole (99%)

Ciclo CNO: nel Sole 1%, dominante per stelle più massive

Neutrini solari

- Reazioni di fusione nucleare \rightarrow emissione di neutrini
- "Fotografia" dell'interno del Sole
- Catena pp: dominante nel Sole (99%)

Borexino

Borexino

- Dal 2007 @ LNGS
- Misura di ν solari di bassa energia: 300 ton di scintillatore liquido ultrapuro
- Bassissimo fondo radioattivo
- Rivelazione con scattering elastico: $\nu_{\chi} + e^- \rightarrow \nu_{\chi} + e^- \quad x = e, \mu, \tau$
- 2000 fotomoltiplicatori:
 - Posizione \rightarrow tempi di arrivo fotoni
 - Energia \rightarrow numero fotoni

Borexino

- Dal 2007 @ LNGS
- Misura di ν solari di bassa energia: 300 ton di scintillatore liquido ultrapuro
- Bassissimo fondo radioattivo
- Rivelazione con scattering elastico: $\nu_{\chi} + e^- \rightarrow \nu_{\chi} + e^- \quad x = e, \mu, \tau$
- 2000 fotomoltiplicatori:
 - Posizione \rightarrow tempi di arrivo fotoni
 - Energia \rightarrow numero fotoni

- Spettro di neutrini solari atteso
- Modello Solare Standard B16

- Spettro di neutrini solari atteso
- Modello Solare Standard B16
- Borexino:
 - obiettivo iniziale: misura di v da ⁷Be

- Spettro di neutrini solari atteso
- Modello Solare Standard B16
- Borexino:
 - obiettivo iniziale: misura di v da ⁷Be
 - obiettivo raggiunto: tutti i v dalla catena pp

- Spettro di neutrini solari atteso
- Modello Solare Standard B16
- Borexino:
 - obiettivo iniziale: misura di **v** da ⁷Be
 - obiettivo raggiunto: tutti i v dalla catena pp

Borexino – Selezione dati

• Spettro grezzo rivelato: nessun taglio

Borexino – Selezione dati

- Spettro grezzo rivelato: nessun taglio
- Spettro dopo taglio muoni

Borexino – Selezione dati

- Spettro grezzo rivelato: nessun taglio
- Spettro dopo taglio muoni
- Spettro dopo selezione di Volume Fiduciale

Spettro energetico a bassa energia: fit simultaneo

Besiduals: (Data - Fit) / 0 Hency Log / (Jata - Fit) / 0 Hency Log / (Jata - Fit) / 0 Hency (keV) Fit simultaneo delle componenti a bassa energia (pp, 7Be, pep + limite CNO)

- Esposizione 1.6 volte la Fase 1
- Fit da 0.19 MeV a 2.93 MeV.

Spettro energetico a bassa energia: fit simultaneo

Fit simultaneo delle componenti a bassa energia (pp, 7Be, pep + limite CNO)

- Esposizione 1.6 volte la Fase 1
- Fit da 0.19 MeV a 2.93 MeV.

Due metodi complementari:

- 1. Analitico: flessibile per variazioni di risposta del rivelatore / propenso a correlazioni
- 2. Monte Carlo: tuning indipendente dei parametri / precisione migliore del %

Fit multivariato: minimizzazione di likelihood binnata

Fit per neutrini da ⁸B

- Analisi separata
- Esposizione 11.5 volte Fase 1
- Fit **radiale** in due finestre di energia separate per la gestione del fondo: **3.2-5 MeV** e **5-17 MeV**
- Precisione sul flusso: 8%

Risultati dei fit

v solari	Rate (cpd/100 t)	Flusso (cm ⁻² s ⁻¹)	Flux –SSM predictions B16 (cm ⁻² s ⁻¹)
рр	$134 \pm 10^{+6}_{-10}$	$(6.1 \pm 0.5^{+0.3}_{-0.5}) \times 10^{10}$	$5.98(1.\pm0.006) \times 10^{10}$ (HZ) $6.03(1.\pm0.005) \times 10^{10}$ (LZ)
⁷ Be	$48.3 \pm 1.1 \substack{+0.4 \\ -0.7}$	$(4.99 \pm 0.11^{+0.06}_{-0.08}) \times 10^9$	$4.93(1.\pm0.06) \times 10^9$ (HZ) $4.50(1.\pm0.06) \times 10^9$ (LZ)
pep (HZ)	$2.43 \pm 0.36 ^{+0.15}_{-0.22}$	$(1.27 \pm 0.19^{+0.08}_{-0.12}) \times 10^8$	$1.44(1.\pm0.009) \times 10^8$ (HZ) $1.46(1.\pm0.009) \times 10^8$ (LZ)
pep (LZ)	$2.65 \pm 0.36 ^{+0.15}_{-0.24}$	$(1.39 \pm 0.19^{+0.08}_{-0.13}) \times 10^{8}$	$1.44(1.\pm0.009) \times 10^8$ (HZ) $1.46(1.\pm0.009) \times 10^8$ (LZ)
⁸ B	$0.223\substack{+0.015+0.006\\-0.016-0.006}$	$(5.68^{+0.39+0.03}_{-0.41-0.03}) \times 10^{6}$	$5.46(1.\pm0.12) \times 10^{6}$ (HZ) $4.50(1.\pm0.12) \times 10^{6}$ (LZ)
CNO	< 8.1 (95 % C.L.)	< 7.9 × 10 ⁸ (95 % C.L.)	$4.92(1.\pm0.11) \times 10^{8}$ (HZ) $3.52(1.\pm0.10) \times 10^{8}$ (LZ)
hep	<0.002 (90% C.L.)	< 2.2 × 10 ⁵ (90 % C.L.)	$7.98(1.\pm0.30) \times 10^3$ (HZ) $8.25(1.\pm0.12) \times 10^3$ (LZ)

[cpd/100ton: conteggi al giorno per 100 tonnellate di scintillatore]

• Risultati compatibili rispetto alla Fase 1 e precisione migliorata

Risultati dei fit

v solari	Rate (cpd/100 t)	Flusso (cm ⁻² s ⁻¹)	Flux –SSM predictions B16 (cm ⁻² s ⁻¹)
рр	$134 \pm 10^{+6}_{-10}$	$(6.1 \pm 0.5^{+0.3}_{-0.5}) \times 10^{10}$	$5.98(1.\pm0.006) \times 10^{10}$ (HZ) $6.03(1.\pm0.005) \times 10^{10}$ (LZ)
⁷ Be	$48.3 \pm 1.1 \substack{+0.4 \\ -0.7}$	$(4.99 \pm 0.11^{+0.06}_{-0.08}) \times 10^9$	$4.93(1.\pm0.06) \times 10^{9}$ (HZ) $4.50(1.\pm0.06) \times 10^{9}$ (LZ)
pep (HZ)	$2.43 \pm 0.36 ^{+0.15}_{-0.22}$	$(1.27 \pm 0.19^{+0.08}_{-0.12}) \times 10^8$	$1.44(1.\pm0.009) \times 10^8$ (HZ) $1.46(1.\pm0.009) \times 10^8$ (LZ)
pep (LZ)	$2.65 \pm 0.36^{+0.15}_{-0.24}$	$(1.39 \pm 0.19^{+0.08}_{-0.13}) \times 10^{8}$	$1.44(1.\pm0.009) \times 10^8$ (HZ) $1.46(1.\pm0.009) \times 10^8$ (LZ)
⁸ B	$0.223\substack{+0.015+0.006\\-0.016-0.006}$	$(5.68^{+0.39+0.03}_{-0.41-0.03}) \times 10^{6}$	$5.46(1.\pm0.12) \times 10^{6}$ (HZ) $4.50(1.\pm0.12) \times 10^{6}$ (LZ)
CNO	< 8.1 (95 % C.L.)	< 7.9 × 10 ⁸ (95 % C.L.)	$4.92(1.\pm0.11) \times 10^{8}$ (HZ) $3.52(1.\pm0.10) \times 10^{8}$ (LZ)
hep	<0.002 (90% C.L.)	<2.2 × 10 ⁵ (90 % C.L.)	$7.98(1.\pm0.30) \times 10^3$ (HZ) $8.25(1.\pm0.12) \times 10^3$ (LZ)

[cpd/100ton: conteggi al giorno per 100 tonnellate di scintillatore]

- Risultati compatibili rispetto alla Fase 1 e precisione migliorata
- Assenza di neutrini pep rigettata ad oltre 5σ / Limite su CNO
- La simultaneità del fit a bassa E limita possibili correlazioni tra le specie di neutrini

Metallicità solare: abbondanza di elementi più massivi di He Fondamentale per la costruzione di modelli solari

Metallicità solare: abbondanza di elementi più massivi di He Fondamentale per la costruzione di modelli solari

Metallicità solare: abbondanza di elementi più massivi di He Fondamentale per la costruzione di modelli solari

- v da ⁷Be e ⁸B: modello con differenze del 9% e 18% a seconda dell'alta o bassa metallicità
- Incertezza dominante: teorica, su modelli solari

Metallicità solare: abbondanza di elementi più massivi di He Fondamentale per la costruzione di modelli solari

- v da ⁷Be e ⁸B: modello con differenze del 9% e 18% a seconda dell'alta o bassa metallicità
- Incertezza dominante: teorica, su modelli solari

Indicazione debole verso alta met. (bassa met. sfavorita a 1.5σ)

Implicazioni: fusione solare

 Ramificazioni della catena pp (da Flussi da pp e da ⁷Be)

$$R = \frac{<^{3} He + ^{4} He >}{<^{3} He + ^{3} He >}$$

Implicazioni: fusione solare

 Ramificazioni della catena pp (da Flussi da pp e da ⁷Be)

 $R = \frac{<^{3} He + ^{4} He >}{<^{3} He + ^{3} He >}$

• Test sperimentale per la fusione solare

Implicazioni: fusione solare

 Ramificazioni della catena pp (da Flussi da pp e da ⁷Be)

 $R = \frac{<^{3} He +^{4} He >}{<^{3} He +^{3} He >}$

• Test sperimentale per la fusione solare

Predizione teorica: R(HZ)= 0.18 ± 0.01 R(LZ)= 0.16 ± 0.01

Borexino: R= 0.18 ± 0.02

• Rate di interazione \rightarrow probabilità di sopravvivenza v_e a diverse energie $P(v_e \rightarrow v_e)$

- Rate di interazione \rightarrow probabilità di sopravvivenza v_e a diverse energie $P(v_e \rightarrow v_e)$
- Test a bassa E che ad alta E e confronto con predizione oscillazione v_e secondo MSW-LMA
 - Bassa E: miglior precisione finora
 - Alta E: accordo con SK e SNO

- Rate di interazione \rightarrow probabilità di sopravvivenza v_e a diverse energie $P(v_e \rightarrow v_e)$
- Test a bassa E che ad alta E e confronto con predizione oscillazione v_e secondo MSW-LMA
 - Bassa E: miglior precisione finora
 - Alta E: accordo con SK e SNO

- Rate di interazione \rightarrow probabilità di sopravvivenza v_e a diverse energie $P(v_e \rightarrow v_e)$
- Test a bassa E che ad alta E e confronto con predizione oscillazione v_e secondo MSW-LMA
 - Bassa E: miglior precisione finora
 - Alta E: accordo con SK e SNO

In accordo con oscillazione con parametri MSW-LMA

Conclusioni

Spettroscopia di neutrini solari

- Misure di precisione: pep (5σ), ⁷Be, pp, CNO (limite), ⁸B, hep
- Test del Modello Solare Standard
- Indicazione debole sulla metallicità solare

Conclusioni

Spettroscopia di neutrini solari

- Misure di precisione: pep (5σ), ⁷Be, pp, CNO (limite), ⁸B, hep
- Test del Modello Solare Standard
- Indicazione debole sulla metallicità solare

Altri risultati di Borexino:

- Geo-neutrini
- Variazioni stagionali
- Limite al momento magnetico del neutrino
- Limite a v da onde gravitazionali

• ...

Conclusioni

Spettroscopia di neutrini solari

- Misure di precisione: pep (5σ), ⁷Be, pp, CNO (limite), ⁸B, hep
- Test del Modello Solare Standard
- Indicazione debole sulla metallicità solare

Altri risultati di Borexino:

- Geo-neutrini
- Variazioni stagionali
- Limite al momento magnetico del neutrino
- Limite a v da onde gravitazionali

• ...

Problemi aperti:

- Metallicità solare: alta o bassa?
- Misura di v da ciclo CNO?

Backup

Risultati: CNO e pep

Limite superiore a v da ciclo CNO rate(CNO) < 9.1 cpd/100 t @ 95% C.L.

Ipotesi HZ: rate(CNO) < 4.91 ± 0.56 cpd/100t Ipotesi LZ: rate(CNO) < 3.62 ± 0.37 cpd/100t

Assenza di neutrini pep rigettata ad oltre 5σ

5

rate(pep) = 2.43 ± 0.36 (stat) +0.15-0.22 (sys) cpd/100 t

v pep

profilo di $\Delta \chi^2$

5σ

Metallicità solare – Fit globale

- v da ⁷Be e ⁸B: differenze del 9% e 18% a seconda dell'alta o bassa metallicità
- Fit globale: esperimenti su neutrini solari + KamLand