## Misura della violazione di CP in decadimenti dei mesoni B in due corpi carichi senza charm a LHCb IFAE 2018 - Milano Bicocca

Davide Fazzini

Università degli Studi di Milano Bicocca & INFN

4 Aprile 2018







## Sommario

- Introduzione
- Stato dell'arte
- Principali ingredienti della misura
- Risultati finali
- Conclusioni

## Il rivelatore LHCb

## • VELO:

ricostruzione del vertice misura del tempo proprio

## Magnete e tracciatore:

ricostruzione delle tracce misura del momento

## • RICH:

identificazione delle particelle (PID)

## Calorimetro:

misura dell'energia identificazione di  $e, \gamma$ 

## Sistema muoni:

identificazione dei muoni

## • Trigger

selezione degli eventi





 $L = 2(5) \cdot 10^{32} \text{ cm}^{-2} \text{ s}^{-1},$ 3fb<sup>-1</sup> integrata in 3 anni (Run 1) 10 MHz interazione visibile 10<sup>12</sup> bb coppie/anno

## Motivazioni dell'analisi: determinazione della matrice CKM

- La matrice CKM descrive il mescolamento del sapore dei quark
- La sua origine è dovuta alla differenza tra gli autostati di massa e deboli
- La precisa determinazione degli elementi di matrice è estremamente importante per una completa **comprensione della violazione di CP**
- La richiesta dell'unitarietà della matrice impone dei vincoli:

$$V_{CKM} \cdot V^*_{CKM} = \mathbb{1} \implies \sum_i V_{ij} \cdot V_{ik} = \sum_i V_{ji} \cdot V_{ki} = \delta_{jk}$$

 $\delta_{jk} = \begin{cases} 1, & \text{se } j = k & \text{condizione di unitarietà} \\ 0, & \text{se } j \neq k & \text{condizione di ortogonalità} \end{cases}$ 

• É possibile così definire dei "triangoli di unitarietà"

• Attualmente l'angolo  $\gamma$  è quello conosciuto con meno precisione

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \qquad \qquad \boxed{ \begin{vmatrix} V_{ud} V_{ub}^* \\ V_{cd} V_{cb}^* \\ V_{cd} V_{cb}^* \end{vmatrix}}_{(0,0)} \begin{pmatrix} \overline{\rho}, \overline{\eta} \end{pmatrix} \begin{pmatrix} V_{td} V_{tb}^* \\ V_{cd} V_{cb}^* \\ V_{cd} V_{cb}^* \\ V_{cd} V_{cb} \end{pmatrix}} \qquad \qquad \boxed{ \begin{vmatrix} V_{ud} V_{ub}^* \\ V_{cd} V_{cb}^* \\ V_{cd} V_{cb}^* \\ V_{cd} V_{cb} \\ V_{cd} \\ V_{cd} V_{cb} \\ V_{cd} \\ V_{cd$$

## Motivazioni dell'analisi: perché $B^0_{(s)} \rightarrow hh$



• Nei decadimenti  $B^0 \rightarrow \pi^+\pi^-$  and  $B_s \rightarrow K^+K^-$  partecipano molti processi fisici:

- decadimenti a digramma albero e pinguino
- "mescolamento" dei mesoni B neutri
- La misura di CPV dipendente dal tempo permette la determinazione delle fasi  $\gamma$  e  $\beta_s$  della matrice CKM

La presenza dei diagrammi a loop:

- introduce incertezze adroniche come parametri addizionali nelle ampiezze (legati alla simmetria U-spin)
- rende le osservabili di CPV sensibili a Nuova Fisica
- fornisce l'opportunità di confrontare i risultati con le fasi di CKM misurate da decadimenti dominati dal livello albero

## Diagrammi di decadimento



#### Osservabili di CPV

 Le principali osservabili di CPV sono le asimmetrie dipendenti dal tempo dei decadimenti B<sub>d</sub> → π<sup>+</sup>π<sup>-</sup> e B<sub>s</sub> → K<sup>+</sup>K<sup>-</sup>:

$$A(t) = \frac{\Gamma_{\overline{B}_{(s)}^0 \to f}(t) - \Gamma_{B_{(s)}^0 \to f}(t)}{\Gamma_{\overline{B}_{(s)}^0 \to f}(t) + \Gamma_{B_{(s)}^0 \to f}(t)} = \frac{-C_{\mathsf{f}} \cos\left(\Delta m_{d(s)}t\right) + \mathsf{S}_{\mathsf{f}} \sin\left(\Delta m_{d(s)}t\right)}{\cosh\left(\frac{\Delta\Gamma_{d(s)}}{2}t\right) + A_{f}^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_{d(s)}}{2}t\right)}$$

Introducendo:

 $\mathbf{q}/\mathbf{p}$ : rapporto tra le proporzioni di  $B \in \overline{B}$  negli autostati di massa

 $\overline{A}_{f}/A_{f}$ : rapporto tra le ampiezze dei decadimenti coniugati di CP

$$\Longrightarrow \lambda_{\mathbf{f}} = \frac{\mathbf{q}}{\mathbf{p}} \frac{\mathbf{A}_{\mathbf{f}}}{\mathbf{A}_{\mathbf{f}}}$$

$$\mathcal{C}_{\mathrm{f}} = rac{1-|\lambda_{\mathrm{f}}|^2}{1+|\lambda_{\mathrm{f}}|^2}$$

$$m{S}_{f}=rac{2\textit{Im}\lambda_{f}}{1+|\lambda_{f}|^{2}}$$



CPV diretta

## CPV indotta dal mescolamento

• Le asimmetrie di CPV integrate nel tempo per i decadimenti  $B^0 \to K^+\pi^$ e  $B_s \to \pi^+K^-$  sono definite come:

$$A_{CP} = \frac{|\overline{A}_{\overline{f}}|^2 - |A_f|^2}{|\overline{A}_{\overline{f}}|^2 + |A_f|^2}$$

#### Risultati precedenti

• Prima misura di  $C_{\pi\pi}$  and  $S_{\pi\pi}$  effettuata da BaBar & Belle usando il decadimento  $B^0 \rightarrow \pi^+ \pi^-$ **BaBar**:  $C_{\pi\pi} = -0.25 \pm 0.08 \pm 0.02$ ,  $S_{\pi\pi} = -0.68 \pm 0.10 \pm 0.03$ **Belle**:  $C_{\pi\pi} = -0.33 \pm 0.06 \pm 0.03$ .  $S_{\pi\pi} = -0.64 \pm 0.08 \pm 0.03$  $\pi^+ \pi^- S_{CP} vs C_{CP}$  LHCb ha già effettuato una misura sui C<sub>CP</sub> decadimenti  $B^0 \to \pi^+\pi^- e B_s \to K^+K^-$ BaBar 0 usando i dati raccolti nel 2011 (1 fb $^{-1}$ ) Belle JHEP 10 (2013) 183 LHCb Average -0.2  $B^0 \rightarrow K^+ \pi^ B^0 \rightarrow \pi^+ \pi^ C_{\pi\pi} = -0.38 \pm 0.15 \pm 0.02$  $A_{CP} = -0.080 \pm 0.007 \pm 0.003$ -0.4  $S_{\pi\pi} = -0.71 \pm 0.13 \pm 0.02$  $B_s \rightarrow K^+ \pi^ B_s \rightarrow K^+ K^ C_{KK} = 0.14 \pm 0.11 \pm 0.03$ -0.6  $A_{CP} = 0.27 \pm 0.04 \pm 0.01$  $S_{KK} = 0.30 \pm 0.12 \pm 0.04$  $A_{\rm KK}^{\Delta\Gamma} = -0.75 \pm 0.07 \pm 0.11$ • Valori di  $\gamma \in \beta_s$  finali: -0.8  $\gamma = (63.5^{+7.2}_{-6.7})^{\circ} - 2\beta_s = -0.12^{+0.14}_{-0.16}$ -02 -0.8 -0.6 -0.4 Λ SCP Contours give  $-2\Delta(\ln L) = \Delta x^2 = 1$ , corresponding to 39.3% CL for 2 dot

## Selezione degli eventi

- I parametri  $C_f$ ,  $S_f \in A^{\Delta\Gamma}$  sono determinati con un fit multidimensionale effettuato simultaneamente agli spettri  $K\pi$ ,  $\pi\pi \in KK$
- Tagli in PID sono applicati per ridurre i fondi incrociati a  $\sim$  10% del segnale
- Un albero di decisione potenziato (BDT), comune a tutti i modi di decadimento, è utilizzato per rimuovere il fondo

• F.O.M = 
$$S/\sqrt{S+B}$$





## Identificazione del sapore (I)

- Per determinare il sapore alla produzione dei mesoni B<sup>0</sup><sub>(s)</sub> vengono utilizzati gli algoritmi di identificazione del sapore
- L'identificazione viene effettuata sfruttando le particelle create nell'evento
- Queste particelle possono essere classificate come:
  - della "stessa parte" (SS) se provengono dalla frammentazione del B di segnale
  - della "parte opposta" (OS) se provengono dal decadimento del B opposto



## Identificazione del sapore (II)

• Efficienza di identificazione: frazione di eventi identificati



 Probabilità di errore: frazione di eventi mal identificati.

$$\omega = rac{N_{errati}}{N_{corretti} + N_{errati}}$$

• Diluizione: 
$$D = (1 - 2\omega)$$
  
( $\omega$  calibrata sui dati)

• **Potere di identificazione**: degradazione statistica delle asimmetrie di CP proporzionale alla sensitività delle misure di *C*<sub>f</sub> e *S*<sub>f</sub>

$$\varepsilon_{eff} = \varepsilon D^2 = \varepsilon \langle (1 - 2\omega)^2 \rangle$$

 $C_f^{mis} = (1 - 2\omega)C_f$  $S_f^{mis} = (1 - 2\omega)S_f$ 







## Altre fonti di asimmetria

- Dal fit dipendente dal tempo è possibile estrarre le asimmetrie di CP dei decadimenti  $B^0 \to K^+\pi^-$  e  $B_s \to \pi^+K^-$  dalla simmetria di produzione
- L'asimmetria TD misurata è:

$$m{A}_{mis}(t)pproxm{A}_{CP}+m{A}_{D}+m{A}_{PID}+m{A}_{P}\cos(\Delta m_{d(s)}t)$$

## • É necessario applicare una correzione tenendo in considerazione:

- asimmetria introdotta dalle richieste di PID, APID
- asimmetria di rivelazione del rivelatore, AD
- Le asimmetrie sono determinate usando campioni di calibrazione e convolvendo i risultati con lo spazio fase del decadimento  $B \rightarrow hh$

| $A^{\!K\pi}_{PID}(B^0_{(s)} 	o K^\pm \pi^\mp)$                                              | = | $(-0.04\pm 0.25)\%$                                                       |
|---------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------|
| $egin{aligned} & A^{K\pi}_D(B^0 	o K^+\pi^-) \ & A^{K\pi}_D(B_s 	o \pi^+K^-) \end{aligned}$ | = | $\begin{array}{c} (-0.900\pm 0.141)\% \\ (-0.924\pm 0.142)\% \end{array}$ |

#### Risultati per la selezione $K\pi$ (I)



- Incertezze in rosso ⇒ dovute alle asimmetrie di PID
- Incertezze in blue ⇒ dovute alle asimmetrie di rivelazione

## Risultati per la selezione $K\pi$ (II)



 Il canale dominante è B<sup>0</sup> → K<sup>+</sup>π<sup>−</sup> la cui asimmetria dipendente dal tempo si può osservare con gli algoritmi di identificazione del sapore





algoritmo d'identif.  $SS(\pi + p)$ 



## Risultati per la selezione $\pi\pi$ (l)

## • Distribuzione delle osservabili usate nel fit



• L'asimmetria dipendente dal tempo è stata determinata sul decadimento  $B^0 \rightarrow \pi^+\pi^-$  usando gli algoritmi di identificazione *OS* e  $SS(\pi + p)$ 



## Risultati per la selezione KK (I)

## • Distribuzione delle osservabili usate nel fit



## Risultati per la selezione KK (II)

• L'asimmetria dipendente dal tempo è stata determinata sul decadimento  $B_s \rightarrow K^+ K^-$  usando gli algoritmi di identificazione *OS* e *SSk* 



Stato dell'arte

Principali ingredienti dell'analis

Risultati finali

#### Conclusioni

- Abbiamo fornito sia una misura dipendente dal tempo che una integrata nel tempo della violazione di CP nei decadimenti  $B \rightarrow hh$
- Tutti i valori finali sono in accordo con i risultati precedenti
- Le misure di  $A_{CP}$ ,  $C_{\pi^+\pi^-}$  e  $S_{\pi^+\pi^-}$  sono le più precise provenienti da un singolo esperimento
- Usando un test χ<sup>2</sup> i risultati nella selezione K<sup>+</sup>K<sup>−</sup> differiscono da (0, 0, -1) con un significanza di 4σ
  ⇒ è la più forte evidenza di TD CPV nei decadimenti dei B<sub>s</sub>
- Articolo in fase di pubblicazione: LHCb-PAPER-2018-006

| $egin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                         | =<br>=      | $\begin{array}{c} -0.34 \pm 0.06 \pm 0.01 \\ -0.63 \pm 0.05 \pm 0.01 \end{array}$                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------|
| $egin{array}{c} \mathcal{C}_{\mathcal{K}^+\mathcal{K}^-} \ \mathcal{S}_{\mathcal{K}^+\mathcal{K}^-} \ \mathcal{A}_{\mathcal{K}^+\mathcal{K}^-}^{\Delta\Gamma} \end{array}$ | =<br>=<br>= | $\begin{array}{c} 0.20 \pm 0.06 \pm 0.02 \\ 0.18 \pm 0.06 \pm 0.02 \\ -0.79 \pm 0.07 \pm 0.10 \end{array}$ |
| $egin{aligned} & {\cal A}_{CP}(B^0 	o K^+\pi^-) \ & {\cal A}_{CP}(B_s 	o \pi^+K^-) \end{aligned}$                                                                          | =<br>=      | $\begin{array}{c}(-8.4\pm0.4\pm0.3)\%\\(21.3\pm1.5\pm0.3)\%\end{array}$                                    |

# Diapositive di supporto

#### Osservabili di CPV (II)

- $\gamma \in \beta_s$  sono legate a  $C_f \in S_f$  da complicate equazioni non lineari
- I diagrammi a pinguino introducono parametri adronici (d, θ, d', θ') nella ampiezze di decadimento:
  - incertezze aggiuntive sulla misura di  $\gamma \in \beta_s$
  - con le simmetrie di Isospin e U-spin si possono vincolare i parametri adronici e ridurre le incertezze teoriche su γ e β<sub>s</sub>

$$\begin{split} C_{\pi\pi} &= \frac{2d\sin(\theta)\sin(\gamma)}{1 - 2d\cos(\theta)\cos(\gamma) + d^2}, \\ C_{KK} &= \frac{2\tilde{d}'\sin(\theta')\sin(\gamma)}{1 + 2\tilde{d}'\cos(\theta')\cos(\gamma) + \tilde{d}'^2}, \\ S_{\pi\pi} &= -\frac{\sin(2\beta + 2\gamma) - 2d\cos(\theta)\sin(2\beta + \gamma) + d^2\sin(2\beta)}{2d\cos(\theta)\cos(\gamma) + d^2}, \\ S_{KK} &= -\left(\frac{\sin(-2\beta_s + 2\gamma) + 2\tilde{d}'\cos(\theta')\sin(-2\beta_s + \gamma) + \tilde{d}'^2\sin(-2\beta_s)}{1 + 2\tilde{d}'^2\cos(\theta')\cos(\gamma) + \tilde{d}'^2}\right). \end{split}$$

Physics Letters B, Volume 741

#### Sistematiche

#### Due metodi principali:

- Parametri fissati → ripetere il fit ai dati 100 volte cambiando il valore dei parametri fissati in accordo ai loro errori (e correlazioni con gli altri parametri)
- Modelli: generare pseudo-esperimenti con il modello base e ripetere il fit con il modello base e quello alternativo
- La somma in quadratura della media e la RMS della variazione è presa come incertezza sistematica

| Parametri                          | $\mathcal{C}_{\pi^+\pi^-}$ | $S_{\pi^+\pi^-}$ | $C_{K^+K^-}$ | $S_{K^+K^-}$ | $A_{K^+K^-}^{\Delta\Gamma}$ | $A_{CP}(B^0 	o K^+\pi^-)$ | $A_{CP}(B_s \rightarrow \pi^+ K^-)$ |
|------------------------------------|----------------------------|------------------|--------------|--------------|-----------------------------|---------------------------|-------------------------------------|
| Accettanza temporale               | 0.0011                     | 0.0004           | 0.0020       | 0.0017       | 0.0778                      | 0.0004                    | 0.0002                              |
| Calibrazione risoluzione temporale | 0.0014                     | 0.0013           | 0.0108       | 0.0119       | 0.0051                      | 0.0001                    | 0.0001                              |
| Modello risoluzione temporale      | 0.0001                     | 0.0005           | 0.0002       | 0.0002       | 0.0003                      | trascurabile              | trascurabile                        |
| Parametri d'ingresso               | 0.0025                     | 0.0024           | 0.0092       | 0.0107       | 0.0480                      | trascurabile              | 0.0001                              |
| Calibrazione algoritmo OS          | 0.0018                     | 0.0021           | 0.0018       | 0.0019       | 0.0001                      | trascurabile              | trascurabile                        |
| Calibrazione algoritmo SSk         | n/a                        | n/a              | 0.0061       | 0.0086       | 0.0004                      | n/a                       | n/a                                 |
| Calibrazione algoritmo SS          | 0.0015                     | 0.0017           | n/a          | n/a          | n/a                         | trascurabile              | trascurabile                        |
| Modello temp. fondi incrociati     | 0.0075                     | 0.0059           | 0.0022       | 0.0024       | 0.0003                      | 0.0001                    | 0.0001                              |
| Fondo 3-corpi                      | 0.0070                     | 0.0056           | 0.0044       | 0.0043       | 0.0304                      | 0.0008                    | 0.0043                              |
| Modello temporale fondo comb.      | 0.0016                     | 0.0016           | 0.0004       | 0.0002       | 0.0019                      | 0.0001                    | 0.0005                              |
| Modello massa segnale (reso)       | 0.0027                     | 0.0025           | 0.0015       | 0.0015       | 0.0023                      | 0.0001                    | 0.0041                              |
| Modello massa segnale (code)       | 0.0007                     | 0.0008           | 0.0013       | 0.0013       | 0.0016                      | trascurabile              | 0.0003                              |
| Modello massa fondo comb.          | 0.0001                     | 0.0003           | 0.0002       | 0.0002       | 0.0016                      | trascurabile              | 0.0001                              |
| Asimmetria PID                     | n/a                        | n/a              | n/a          | n/a          | n/a                         | 0.0025                    | 0.0025                              |
| Asimmetria rivelazione             | n/a                        | n/a              | n/a          | n/a          | n/a                         | 0.0014                    | 0.0014                              |
| Totale                             | 0.0115                     | 0.0095           | 0.0165       | 0.0191       | 0.0966                      | 0.0030                    | 0.0066                              |

#### Calibrazione degli algoritmi di identificazione del sapore

- La probabilità di errore η, calcolata dagli algoritmi, deve essere calibrata in modo da ottenere un stima di ω(η) corretta
- Funzione di calibrazione:

$$\omega(\eta) = p_0 + p_1 \cdot (\eta - \hat{\eta})$$

- La combinazione degli algoritmi OS è calibrata direttamente durante il fit finale grazie al decadimento  $B^0 \rightarrow K^+\pi^-$
- Gli algoritmi protone SS e pione SS sono calibrati usando il canale di decadimento  $B^0 \to K^+ \pi^-$ 
  - Una volta calibrati i due algoritmi vengono combinati insieme in un unico identificatore (SS(π + p))
  - La combinazione è successivamente ricalibrata durante il fit finale
- L'algoritmo kaone SS (SSk) è calibrato usando il decadimento  $B_s \rightarrow D_s^+ \pi^-$ 
  - Il numero di eventi di  $B_s \to \pi^+ K^-$  non è sufficiente per ottenere una calibrazione attendibile
  - differenze tra i due modi di decadimento sono tenute in considerazioni effettuando un ripesamento cinematico

#### **Risoluzione temporale**

- Determinata eseguendo un fit TD ad un campione di eventi  $B_{(s)} \rightarrow D_{(s)}\pi$ :
  - Modello di risoluzione è una doppia gaussiana, studiata da un campione MC
     → frazioni relative tra le gaussiane e il rapporto tra le larghezze è fissato ai
     valori della simulazione
  - Γ<sub>(s)</sub> e ΔΓ<sub>(s)</sub> sono fissate alle medie di HFLAV
  - Nel fit è utilizzato solo l'algoritmo OS
- Parametri sono fissati nel fit al campione di  $B \rightarrow hh$
- Errori e correlazioni sono tenute in considerazione come sistematiche



#### Accettanza temporale

- Accettanza del tempo di decadimento per i decadimenti del B<sup>0</sup> può essere determinata dai dati:
  - gli spettri  $K\pi$ ,  $\pi\pi$  e KK vengono divisi in categorie del tempo di decadimento
  - Per ogni categoria viene eseguito un fit sulla massa invariante in modo da determinare il numero di eventi di  $B^0 \to K^+\pi^-$
  - Viene costruito un istogramma con la distribuzione del tempo di decadimento del  $B^0 \to K^+\pi^-$
  - Dato che ΔΓ<sub>d</sub> = 0, l'accettanza può essere ricavata dividendo l'istogramma ottenuto per un puro esponenziale con τ = 1.520 ps
  - · L'accettanza ottenuta è infine fittata con una funzione efficace
- Per gli altri modi di decadimento:
  - Il rapporto delle accettanze con il  $B^0 \rightarrow K^+\pi^-$  è determinato dal MC.
  - L'istogramma della accettanza del  $B^0 \rightarrow K^+\pi^-$  ottenuto precedentemente è riscalato usando il relativo rapporto
  - Il nuovo istogramma ottenuto è fittato con una funzione efficace

