EFFETTO DEI CAMPI MAGNETICI PRIMORDIALI

SUI FUTURI VINCOLI DALLA CMB SULLE

ONDE GRAVITAZIONALI INFLAZIONARIE

Fabrizio Renzi

Giovanni Cabass

Eleonora di Valentino

Alessandro Melchiorri

Luca Pagano

[arXiv:1803.03230v1 [astro-ph.CO]]

Fabrizio Renzi – Ph.D. Student '' Sapienza '' – Università di Roma

INFN ROMA

IFAE 2018

COSMOLOGIA E CAMPI MAGNETICI

- I campi magnetici sono presenti in tutte le strutture dell'Universo (origine ?)
- La produzione di onde gravitazionali è prevista dai modelli inflazionari (test inflazione)
- Campi magnetici e onde gravitazionali possono essere usati come una "finestra" sulla fisica delle alte energie
- Specifici modelli di generazione del campo magnetico possono produrre uno spettro di modi B del tutto identico a quello predetto dai modelli inflazionari
- I futuri esperimenti volti alla misurazione davranno come obbiettivo principale la misurazione dei modi B di polarizzazione

Indagare cosmologie che prevedano sia modi inflazionari che modi magnetici

CAMPI MAGNETICI PRIMORDIALI

• Lo spettro di potenza (angolare) magnetico è modellato come un campo gaussiano omogeneo e isotropo.

$$P_B(k) = \begin{cases} Ak^{n_B} & k < k_D \\ 0 & altrimenti \end{cases} \qquad B_{\lambda}^2 = \int_0^\infty \frac{k^2 dk}{2\pi^2} e^{-k^2 \lambda^2} P_B(k) = \frac{A}{2\pi^2} \frac{\Gamma\left(\frac{n_B + 3}{2}\right)}{\lambda^{n_B + 3}}$$

 $\lambda = 1$ Mpc e $A_B \equiv B_{1Mpc}$ nel seguito

 $\langle B_i(\boldsymbol{k}) B_j^{\star}(\boldsymbol{k}') \rangle = (2\pi)^3 \delta^{(3)}(\boldsymbol{k} - \boldsymbol{k}') P_{ij}(\hat{k}) P_B(k)$ $P_{ij} = \delta_{ij} - \hat{k}_i \hat{k}_j$

- n_B tiene conto della storia di generazione del campo *i.e.* magnetogenesi
 - ⇒ Meccanismi causali (*e.g.* transizioni di fase) favoriscono spettri con $n_B \ge 2$
 - ⇒ Magnetogenesi inflazionarie e postinflazionarie favoriscono spettri con $n_B \leq 0$

k_D tiene conto della dissipazione del campo a causa della viscosità di radiazione alle piccole scale

Funzione di correlazione a due punti

4 aprile 2018

Trascuriamo l'elicità del campo

MODI MAGNETICI

- Il campo magnetico è sorgente di due tipi di perturbazioni :
 - 1. Modi passivi
 - i. Generati prima del disaccoppiamento dei neutrini dal fluido cosmologico
 - ii. Crescono logaritmicamente $\propto \Pi_B \log \frac{\eta_v}{\eta_B}$
 - 2. Modi compensanti
 - i. Generati quando i neutrini compensano lo stress anisotropico del campo magnetico a $\eta > \eta_{\nu}$
 - ii. Modi a curvatura costante $\propto \Pi_B$
 - $\Pi_B \rightarrow stress \ anisotropo \ magnetico$ $\eta_B \rightarrow epoca \ di \ generazione \ del \ campo$ $\eta_{\nu} \rightarrow epoca \ di \ saccoppiamento \ neutrini$

[Shaw & Lewis 2010]

MODI MAGNETICI

 Anche per ampiezze significative (~ 5 nG) sono importanti solo a grande scala in TT, TE ed EE

- I modi tensoriali passivi generano uno spettro BB equivalente ai modi tensoriali inflazionari.
 - Degenerazione tra campi magnetici e onde gravitazionali

- I modi vettoriali magnetici generano perturbazioni a piccola scala.
 - Questa caratteristica può essere usata per distinguere i due spettri.

MODI MAGNETICI

 Anche per ampiezze significative (~ 5 nG) sono importanti solo a grande scala in TT, TE ed EE

Quali tra i futuri esperimenti potranno rompere questa degenerazione ?

- I modi vettoriali magnetici generano perturbazioni a piccola scala.
 - Questa caratteristica può essere usata per distinguere i due spettri.

METODO: ANALISI MCMC

• Spettro di potenza angolare + rumore generati nella forma:

 $\begin{aligned} C_{fid} &= C_{\ell|fid} + N_{\ell} \\ N_{\ell} &= w^{-1} \exp(\ell(\ell+1)\theta^2/8\ln(2)) \end{aligned}$

 $w \equiv [\mu K - rad] \rightarrow power noise \\ \theta \equiv [rad] \rightarrow beam sperimentale$

 Assumiamo che non ci siano correlazioni tra i modi adiabatici primari e i modi magnetici

 $C_{\ell|fid} = C_{\ell}^{primari} + C_{\ell}^{passivi} + C_{\ell}^{compensati}$

Esperimento	Beam [arcmin]	Power noise [µK – arcmin]	ℓ_{max}	ℓ_{min}	f _{sky}
PIXIE	96	3.0	500	2	0.7
LiteBIRD	30	3.2	3000	2	0.7
CORE-M5	3.7	2.0	3000	2	0.7
S3 (Deep)	1	4	3000	50	0.06
S3 (Wide)	1.4	8	3000	50	0.4
CMB-S4	3	1	3000	5	0.4

Gli esperimenti in questione sono un'illustrazione di quanto si potrà ottenere in futuro

METODO: ANALISI MCMC

•	Utilizziamo un modello fiduciale compatibile con i risultati più recenti rilasciati dalla collaborazione Planck [<i>Planck</i> 2015 <i>Results XIII & XIX</i>]	Modello Fiduciale		
•	Parametri magnetici compatibili con un modello Starobinsky : r = 0.0042	$\Omega_b h^2$	0.02225	
		$\Omega_c h^2$	0.1198	
•	I C_{ℓ} teorici sono confrontati con quelli fiduciali valutando la likelihood:	τ	0.055	
	$-2\ln \mathcal{L} = \Sigma_{\ell}(\ell+1)f_{sky}\left(\frac{D}{ C_{fid} } + \ln\frac{ C_{fid} }{ C_{theo} } - 3\right)$	n_s	0.9645	
	$ C_{m} = C^{TT} C^{EE} C^{BB} = (C^{TE})^2 C^{BB}$	$100 heta_{MC}$	1.04077	
	$ C_{fid,theo} = C_{\ell} C_{\ell} C_{\ell} = (C_{\ell}) C_{\ell}$	$ln(10^{10}A_s)$	3.094	
	$D = C_{theo}^{TT} C_{fid}^{EE} C_{fid}^{BB} + C_{fid}^{TT} C_{theo}^{EE} C_{fid}^{BB} + C_{fid}^{TE} C_{theo}^{EE} C_{fid}^{BB} - C_{fid}^{TE} (C_{fid}^{TE} C_{theo}^{BB} + 2C_{theo}^{TE} C_{fid}^{BB})$	A_B (nG)	1.08	
•	Implementato utilizzando il codice COSMOMC + MagCAMB	$log_{10}(^{\eta_{_{\mathcal{V}}}}\!/\!\eta_{_B})$	12	
	https://alexzucca90.github.io/MagCAMB http://cosmologist.info	n_B	-2.9	

ANALISI : VINCOLARE IL FIDUCIALE

- Abbiamo verificato la possibilità dei futuri esperimenti di vincolare correttamente i parametri magnetici del nostro fiduciale
 - PIXIE e LiteBIRD $\longrightarrow \sigma(A_B) \sim 0.06 0.03 \, nG$
 - CORE-M5 e CMB-S4 $\longrightarrow \sigma(A_B) \sim 0.02 \ nG$

minore precisione nel descrivere i modi B

• Lasciare libero $log_{10}(\eta_{\nu}/\eta_{B})$ indebolisce i vincoli di tutti gli esperimenti

	PIXIE	LiteBIRD	CORE-M5	S3 (Deep)	S3 (Wide)	CMB-S4
$log_{10}(^{\eta_{\nu}}/_{\eta_{B}}) = 12$						
$A_B(nG)$	1.074 ± 0.055	$1.078\substack{+0.034\\-0.028}$	1.080 ± 0.019	$0.86\substack{+0.41 \\ -0.13}$	$0.902\substack{+0.35 \\ -0.098}$	1.079 ± 0.020
$log_{10}(^{\eta_{_{V}}}\!/\!\eta_{_{B}})$ free						
$A_B(nG)$	$1.16\substack{+0.15 \\ -0.24}$	$1.15\substack{+0.12\\-0.24}$	$1.066\substack{+0.064\\-0.049}$	$0.89^{+0.41}_{-0.17}$	$0.89\substack{+0.45\\-0.18}$	1.074 ± 0.032
$log_{10}(^{\eta_{\nu}}/\eta_{B})$	/	/	$12.39^{+0.98}_{-1.7}$	/	$11.4^{+2.9}_{-4.0}$	$12.16\substack{+0.81 \\ -0.97}$

4 aprile 2018

ANALISI : VINCOLARE "r"

- Assumiamo un campo di ampiezza nulla e lasciamo *r* libero di variare
 - ⇒ quantificare quanto l'assunzione dell'assenza di un campo magnetico primordiale (A_B = 0) possa influenzare la determinazione del parametro r
- Tutti gli esperimenti considerati producono una forte evidenza di onde gravitazionali inflazionarie
 - i. il fiduciale utilizzato assumeva r = 0

• Un falso positivo è ottenuto come risultato dell'assunzione errata che non ci sia un campo magnetico

	PIXIE	LiteBIRD	CORE-M5	S3 (Deep)	S3 (Wide)	CMB-S4
$A_B = 0$						
r	$0.0065\substack{+0.0013\\-0.0015}$	0.00733 ± 0.00088	0.00725 ± 0.00056	$0.0084\substack{+0.0039\\-0.0052}$	$0.0084\substack{+0.0038\\-0.0046}$	0.00717 ± 0.00072

ANALISI : VINCOLARE "r"

• Assumiamo una cosmologia con onde gravitazionali inflazionarie e campi magnetici

 \Rightarrow Comprendere quali esperimenti futuri possano discriminare fra A_B e r

- i. Includere A_B indebolisce il "falso" vincolo su r
 - \Rightarrow PIXIE, LiteBIRD, S3 \longrightarrow nessuna evidenza significativa per A_B e r *i.e.* sono degeneri
 - \Rightarrow CORE-M5 e CMB-S4 \longrightarrow distinguono chiaramente A_B da r

ii. Includere $log_{10}(^{\eta_{\nu}}/_{\eta_{B}})$ modifica significativamente i risultati per CORE / S4

	PIXIE	LiteBIRD	CORE-M5	S3 (Deep)	S3 (Wide)	CMB-S4
r	$0.0050\substack{+0.0028\\-0.0019}$	$0.0050\substack{+0.0034\\-0.0041}$	< 0.00149	$0.0070\substack{+0.0027\\-0.0061}$	$0.0071\substack{+0.0032\\-0.0057}$	< 0.00112
$A_B(nG)$	$0.59^{+0.45}_{-0.27}$	$0.66^{+0.45}_{-0.22}$	$1.034\substack{+0.052\\-0.027}$	0.60 ± 0.34	$0.59^{+0.40}_{-0.36}$	$1.058\substack{+0.030\\-0.024}$
r	$0.0049\substack{+0.0027\\-0.0019}$	$0.0029\substack{+0.0014\\-0.0024}$	$0.0029\substack{+0.0014\\-0.0024}$	$0.0074\substack{+0.0032\\-0.0060}$	$0.0071\substack{+0.0034\\-0.0052}$	0.0031 ± 0.0017
$A_B(nG)$	< 0.847	$0.70\substack{+0.44\\-0.36}$	$1.057\substack{+0.065\\-0.049}$	$0.89^{+0.41}_{-0.17}$	$0.89^{+0.45}_{-0.18}$	1.074 ± 0.032
$log_{10}(^{\eta_{_{V}}}\!/\eta_{_B})$	/	/	$9.7^{+1.9}_{-2.5}$	/	< 12.7	9.3 ± 1.8

4 aprile 2018

L'IMPORTANZA DI MISURARE LE PICCOLE SCALE

Consideriamo 2 modelli : stesso χ^2_{min} ma differenti valori di A_B e r LiteBIRD CMB-S4 (1): $A_B = 1.064 \ nG$ $r = 1.76 \times 10^{-5}$ (2): $A_B = 7.57 \times 10^{-3} nG$ $r = 7.22 \times 10^{-3}$ 10^{1} S/N $\ell_{\rm max}$ (BB)Quanto bene posso essere distinti da un dato esperimento? Costruiamo un rapporto segnale rumore cumulativo • assumendo che non ci sia correlazione tra i multipoli $\left(\frac{S}{N}\right)_{\ell}^{2} = \sum_{\ell=1}^{\ell_{max}} \frac{\left(C_{\ell}^{(2)} - C_{\ell}^{(1)}\right)^{\ell}}{\sigma_{\ell}^{2}} \quad ; \quad \sigma_{\ell} = \sqrt{\frac{2}{(2\ell+1)f_{sky}}} \left(C_{\ell}^{(1)} + N_{\ell}\right)$ 500 1000 2000 2500 1500 ℓ_{\max}

Lo applichiamo ai soli modi B di polarizzazione per S4 e LBIRD

L'IMPORTANZA DI MISURARE LE PICCOLE SCALE

• L'importanza di misurare le piccole scale può essere dimostrata studiando come una variazione di ℓ_{max} influisce sulla determinazione dei parametri magnetici

Utilizziamo S4 come esempio

• Costruiamo una likelihood esatta per i modi B -2 $ln \mathcal{L} = \Sigma_{\ell} (\ell + 1) f_{sky} \left(\frac{\hat{C}_{\ell}}{\bar{C}_{\ell}} + ln \frac{\bar{C}_{\ell}}{\hat{C}_{\ell}} - 1 \right)$

$$\hat{C}_{\ell} = C_{\ell|fid}^{t+PMF} + N_{\ell} \qquad \bar{C}_{\ell} = C_{\ell}^{t+PMF} + N_{\ell}$$

La degenerazione può essere risolta misurando a $\ell_{max} \gtrsim 900$

• Se ℓ_{max} < 900 i vincoli su A_B e r sarebbero simili a quelli di LiteBIRD

CONCLUSIONI E PROSPETTIVE

- Abbiamo investigato la degenerazione tra onde gravitazionali inflazionarie e campi magnetici basate esclusivamente sulle informazioni derivabili dallo spettro di potenza angolare del fondo cosmico a microonde
- La degenerazione r vs A_B può essere risolta misurando efficientemente le piccole scale
- Alcuni degli esperimenti futuri non saranno di vincolare contemporaneamente entrambi i parametri
- Esistono altri modi di vincolare un campo magnetico primordiale :
 - i. Rotazione Faraday della CMB
 - ii. Storia di ionizzazione dell'Universo (distorsioni Compton-y)
 - iii. Non-Gaussianità magnetiche (bi-spettro e tri-spettro)

BACKUP SLIDES

CAMPI MAGNETICI PRIMORDIALI

• Assumiamo un campo magnetico stocastico $B^i(x^j, \eta)$, generato prima dell'epoca di disaccoppiamento dei neutrini $\eta_B < \eta_v$

ROTAZIONE FARADAY

$$C_{\ell}^{BB} = \frac{2}{\pi} \int \frac{dk}{k} \Delta_{M}^{2}(k) W_{\ell}(k)$$
$$\Delta_{M}^{2} \propto \left(\frac{90 \ GHz}{\nu_{0}}\right)^{4}$$

 $W_{\ell}(k) \implies funzione\ finestra$

MODI B LARGA SCALA

- C'è un eccesso ad alti l del 10% rispetto al lensing, generato dai modi vettoriali compensati
- Il lensing può essere vincolato efficientemente utilizzando TT, TE ed EE

• Misurando i modi B a piccola scala è possibile vincolare l'ampiezza del campo magnetico

DEGENERAZIONE: r vs A_B

• Si sarebbe potuta scegliere una sovrapposizione diversa tra i modi inflazionari e quelli magnetici

DEGENERAZIONE: $r vs \beta$

 β è legato all'ampiezza dei modi tensoriali magnetici

• Degenerazione nel piano $r vs \log \frac{\eta_v}{\eta_B}$

