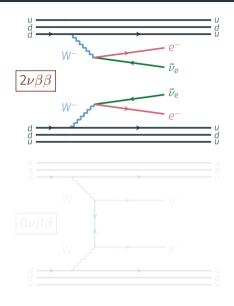
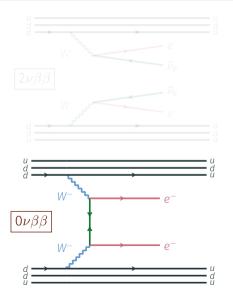
Ricerca del doppio decadimento beta senza neutrini $0 \nu \beta \beta$ in GERDA fase II

Luigi Pertoldi [pertoldi@pd.infn.it]

IFAE 2018 — 06 Aprile 2018


Università degli Studi di Padova INFN – Sezione di Padova

Il decadimento doppio- β

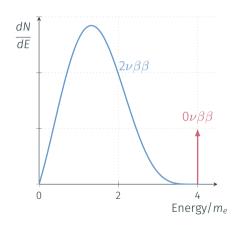

$$(A, Z) \rightarrow (A, Z + 2) + 2e^{-} + 2\bar{\nu}_{e}$$

- · Modello Standard: $T_{1/2}^{2\nu}\sim 10^{19}-10^{24}~{
 m yr}$
- GERDA: $T_{1/2}^{2\nu}[^{76}\text{Ge}] = 1.84_{-0.10}^{+0.14} \cdot 10^{21} \text{ yr}$ [JPG: NPP, 40 (2013) 035110]

$$(A,Z) \to (A,Z+2) + 2e^{-}$$

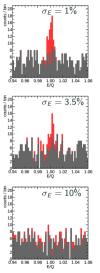
- · Oltre il Modello Standard, violazione Numero Leptonico → neutrino di Majorana
- GERDA: $T_{1/2}^{0\nu}[^{76}Ge] > 8.0 \cdot 10^{25} \text{ yr (90\% C.L.)}$ [PRL, 120 (2018) 132503]

Il decadimento doppio- β


$$(A,Z) \to (A,Z+2) + 2e^- + 2\bar{\nu}_e$$

- Modello Standard: $T_{1/2}^{2\nu}\sim 10^{19}-10^{24}~{
 m yr}$
- GERDA: $T_{1/2}^{2\nu}[^{76}\text{Ge}] = 1.84_{-0.10}^{+0.14} \cdot 10^{21} \text{ yr}$ [JPG: NPP, 40 (2013) 035110]

$$(A, Z) \rightarrow (A, Z + 2) + 2e^{-}$$


- Oltre il Modello Standard, violazione Numero Leptonico → neutrino di Majorana
- GERDA: $T_{1/2}^{0\nu}[^{76}Ge] > 8.0 \cdot 10^{25} \text{ yr (90\% C.L.)}$ [PRL, 120 (2018) 132503]

Il decadimento doppio- β : spettro in energia

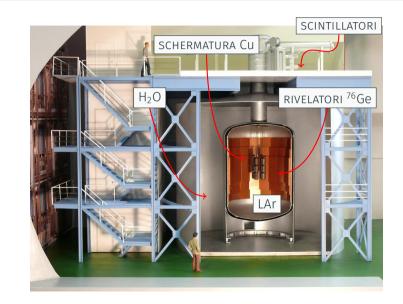
La misura dell'energia è necessaria e sufficiente, è richiesta:

- buona risoluzione in energia (eventi $2\nu\beta\beta$ possono finire al $Q_{\beta\beta}$)
- riduzione delle sorgenti di fondo

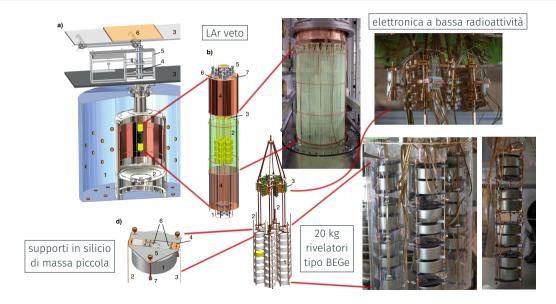
Perchè studiare il decadimento doppio- β ?

La ricerca del $0\nu\beta\beta$ non è una semplice misura delle caratteristiche del neutrino, lavori teorici sconfinati¹

- Il Numero Leptonico ←→ Numero Barionico → GUTs, bariogenesi (non garantito!)
- · previsto (quasi sempre) un termine di massa di Majorana (teorema *black-box*)
- accesso a molti parametri fondamentali, sia esclusivo sia condiviso con altre tecniche
- interpretazione standard: il neutrino che media il $0\nu\beta\beta$ è quello che oscilla, il Modello Standard è una teoria effettiva di una GUT (meccanismo seesaw).
 - Connessione con la massa effettiva di Majorana: $(T_{1/2}^{0\nu})^{-1} = G_{0\nu} |\mathcal{M}_{0\nu}|^2 m_{\beta\beta}^2 \to \text{Parametri}$ di oscillazione e scala di massa assoluta
- innumerevoli interpretazioni non-standard¹

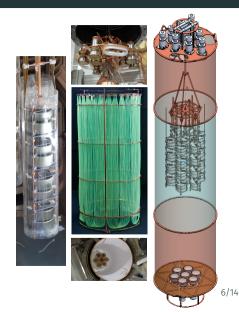

¹W. Rodejohann, [IJMP, E 20 (2011) 1833]

GERmanium Detector Array


Ricerca del $0\nu\beta\beta$ con rivelatori arricchiti al $^{76}{
m Ge}$

sorgente = rivelatore

- Ospitato ai LNGS (3500 m.w.e.), in attività dal 2009 →
- 16 Istituzioni e ~100 membri
- Hardware upgrade
 2015 → Fase II


GERmanium **D**etector **A**rray — Fase II

GERmanium **D**etector **A**rray — Fase II, LAr veto

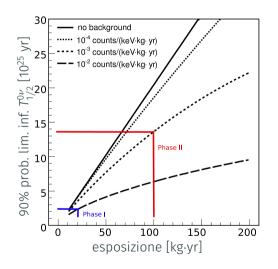
Instrumentazione di tipo ibrido per il LAr veto:

- · 16 PMTs, 9 in alto e 7 in basso
- 800 m di fibre di nylon ricoperte con WLS + 90 SiPMs
- rivestimento di nylon (mini-shrouds) ricoperto di WLS attorno a ogni stringa, barriera meccanica contro gli ioni di ⁴²K

Sensibilità e previsioni

Fase I

- fondo: $\sim 10^{-2} \text{ cts keV}^{-1} \text{kg}^{-1} \text{yr}^{-1}$)
- · esposizione: 21.6 kg·yr
- risultato: $T_{1/2}^{0\nu} > 2.1 \cdot 10^{25} \text{ yr (90\% C.L.)}$ [PRL, 111 (2013) 122503]

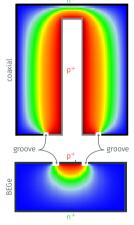

Upgrade e commissionamento

- · raddoppio della massa attiva di ⁷⁶Ge
- sistema di veto basato sull'argon liquido (LAr)
- · riduzione del fondo di un fattore \sim 10

Fase II

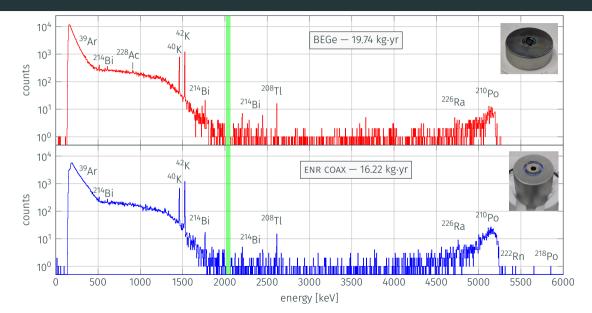
- fondo: $\leq 10^{-3} \text{ cts keV}^{-1} \text{kg}^{-1} \text{yr}^{-1}$)
- esposizione: ≥ 100 kg·yr
- attuale risultato: $T_{1/2}^{0\nu} > 8.0 \cdot 10^{25} \text{ yr}$ (90% C.L.) [PRL, 120 (2018) 132503]

Sensibilità e previsioni

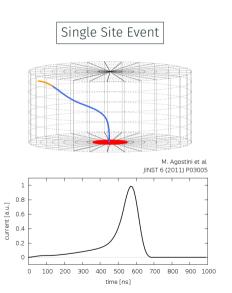


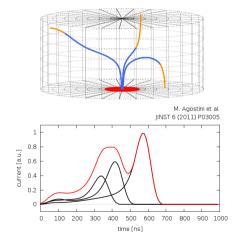
Fase II

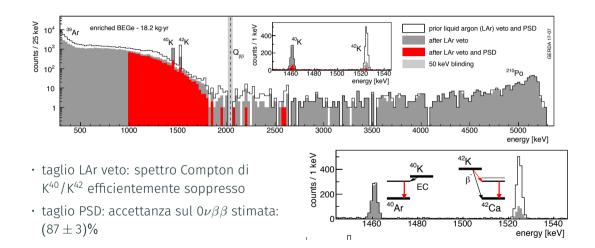
- fondo: $\lesssim 10^{-3}$ cts keV⁻¹kg⁻¹yr⁻¹)
- · esposizione: \gtrsim 100 kg \cdot yr
- attuale risultato: $T_{1/2}^{0\nu} > 8.0 \cdot 10^{25} \text{ yr}$ (90% C.L.) [PRL, 120 (2018) 132503]

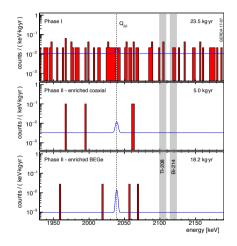

I rivelatori di GERDA

- decadimento doppio- β del ⁷⁶Ge: ⁷⁶Ge \rightarrow ⁷⁶Se + ²e⁻
- Q-valore: $Q_{\beta\beta} = 2039 \text{ keV}$
- rivelatori al ⁷⁶Ge ultra-puri (87%):
 - · sorgente = rivelatore: alta efficienza
 - radio-puri: bassissimo fondo intrinseco
 - · alta densità: $0
 u\beta\beta$ a topologia puntiforme
 - · semiconduttore: FWHM dello 0.2% al Q_{etaeta}
 - ottimi per la Pulse Shape Discrimination (PSD)




Dati


Pulse Shape Discrimination (BEGe)


Multiple Site Event

Riduzione del fondo — PRL, 120 (2018) 132503

Ultimo *unblinding* — PRL, 120 (2018) 132503

- esposizione: 34.3 + 12.4 kg⋅yr.
- 2 + 2 nuovi eventi attorno al $Q_{\beta\beta}$
- Background Index (BI) (BEGe): $1^{+0.6}_{-0.6} \cdot 10^{-3}$ cts keV⁻¹kg⁻¹vr⁻¹

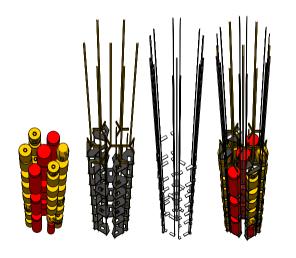
	freq 90% C.L.	bayes 90% C.L.
$N_{0\nu}$	0	0
$T_{1/2}^{2\nu}$	$8.0 \cdot 10^{25} \text{ yr}$	5.1 · 10 ²⁵ yr
sens	5.8 · 10 ²⁵ yr	$4.5 \cdot 10^{25} \text{ yr}$

• limite superiore su $m_{\beta\beta}$ nell'intervallo 0.12 - 0.26 eV

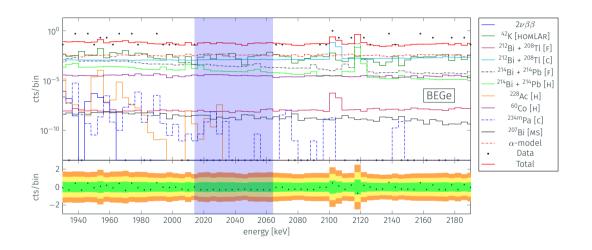
Conclusioni

- GERDA è tra i leader nella fisica del $0\nu\beta\beta$, fondo più basso mai raggiunto attorno al $Q_{\beta\beta}$. Fase II è in regime "background-free" e lo manterrà (importante per la sensibilità).
- limite attuale (frequentista): $T_{1/2}^{0\nu} > 8.0 \cdot 10^{25}$ yr (90% C.L.)
- · ottima risoluzione in energia (2 3 keV al $Q_{\beta\beta}$)

Futuro prossimo:


- · nuovo unblinding prossimamente
- raggiungimento sensibilità 10²⁶ yr
- · raggiungimento esposizione di design di 100 kg·yr

- · nuova collaborazione (GERDA + MAJORANA + altri) formata in ottobre 2016
- · goal: 1 ton di germanio arricchito
- · fase I: 200 kg in GERDA
- · ulteriore riduzione del fondo rispetto a GERDA
- sensibilità fino a 10²⁷ in 5 anni


Modello di fondo

Un modello di fondo accurato è fondamentale per stimare il fondo attorno al $Q_{\beta\beta}$ e studiare lo spettro del $2\nu\beta\beta$ (Majoroni, Lorentz-violation...)

- Sorgenti di fondo sono simulate tramite GEANT4 [JP: CS, 39 (2006) 362]
- \cdot 42 K, 40 K, catene 238 U e 232 Th, 60 Co e 207 Bi
- tutte le componenti di GERDA sono ricustruite

Modello di fondo

Analisi per il $0\nu\beta\beta$

- · blind analysis: i dati attorno al $Q_{\beta\beta}$ vengono resi pubblici e analizzati periodicamente
- · Analisi frequentista (profile-likelihood) e bayesiana
- \cdot modello: fondo piatto + gaussiana centrata in Q_{etaeta} con larghezza $\sigma_{\it E}$
- 7 parametri: 6 BI + $T_{1/2}^{2\nu}$ in comune