Ricerca del doppio decadimento beta senza neutrini $0\nu\beta\beta$ in Gerda fase II

Luigi Pertoldi [pertoldi@pd.infn.it]

IFAE 2018 — 06 Aprile 2018

Università degli Studi di Padova INFN – Sezione di Padova

Il decadimento doppio- β

$(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\overline{\nu}_e$

- \cdot Modello Standard: $T_{1/2}^{2
 u} \sim 10^{19} 10^{24}$ yr
- GERDA: $T_{1/2}^{2\nu}$ [⁷⁶Ge] = $1.84_{-0.10}^{+0.14} \cdot 10^{21}$ yr [JPG: NPP, 40 (2013) 035110]

$(A,Z) \rightarrow (A,Z+2) + 2e^{-1}$

- Oltre il Modello Standard, violazione Numero Leptonico → neutrino di Majorana
- GERDA: T^{0ν}_{1/2}[⁷⁶Ge] > 8.0 · 10²⁵ yr (90% C.L.)
 [PRL, 120 (2018) 132503]

Il decadimento doppio- β

$(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\bar{\nu}_e$

- \cdot Modello Standard: $T_{1/2}^{2
 u} \sim 10^{19} 10^{24}$ yr
- GERDA: $T_{1/2}^{2\nu}$ [⁷⁶Ge] = $1.84_{-0.10}^{+0.14} \cdot 10^{21}$ yr [JPG: NPP, 40 (2013) 035110]

$(A,Z) \rightarrow (A,Z+2) + 2e^{-}$

- Oltre il Modello Standard, violazione Numero Leptonico → neutrino di Majorana
- GERDA: $T_{1/2}^{0\nu}[^{76}Ge] > 8.0 \cdot 10^{25}$ yr (90% C.L.) [PRL, 120 (2018) 132503]

Il decadimento doppio- β : spettro in energia

La misura dell'energia è *necessaria* e *sufficiente*, è richiesta:

- buona risoluzione in energia (eventi $2\nu\beta\beta$ possono finire al $Q_{\beta\beta}$)
- riduzione delle sorgenti di fondo

La ricerca del $0\nu\beta\beta$ non è una semplice misura delle caratteristiche del neutrino, lavori teorici sconfinati¹

- Il Numero Leptonico \leftrightarrow Numero Barionico \rightarrow GUTs, bariogenesi (non garantito!)
- previsto (quasi sempre) un termine di massa di Majorana (teorema *black-box*)
- accesso a molti parametri fondamentali, sia esclusivo sia condiviso con altre tecniche
- interpretazione standard: il neutrino che media il $0\nu\beta\beta$ è quello che oscilla, il Modello Standard è una teoria effettiva di una GUT (meccanismo seesaw).
 - Connessione con la massa effettiva di Majorana: $(T^{0\nu}_{1/2})^{-1} = G_{0\nu}|\mathcal{M}_{0\nu}|^2 m^2_{\beta\beta} \rightarrow Parametri di oscillazione e scala di massa assoluta$
- innumerevoli interpretazioni non-standard¹

¹W. Rodejohann, [IJMP, E 20 (2011) 1833]

GERmanium Detector Array

Ricerca del $0\nu\beta\beta$ con rivelatori arricchiti al ⁷⁶Ge sorgente = rivelatore

- Ospitato ai LNGS (3500 m.w.e.), in attività dal 2009 → Fase I
- 16 Istituzioni e ~100 membri
- Hardware upgrade 2015 \rightarrow Fase II

GERmanium **D**etector Array — Fase II

GERmanium Detector Array — Fase II, LAr veto

Instrumentazione di tipo ibrido per il LAr veto:

- 16 PMTs, 9 in alto e 7 in basso
- 800 m di fibre di nylon ricoperte con WLS + 90 SiPMs
- rivestimento di nylon (mini-shrouds) ricoperto di WLS attorno a ogni stringa, barriera meccanica contro gli ioni di ⁴²K

Sensibilità e previsioni

Fase I

- + fondo: $\sim 10^{-2}~\text{cts}~\text{keV}^{-1}\text{kg}^{-1}\text{yr}^{-1})$
- esposizione: 21.6 kg·yr
- risultato: $T_{1/2}^{0\nu} > 2.1 \cdot 10^{25}$ yr (90% C.L.) [PRL, 111 (2013) 122503]

Upgrade e commissionamento

- raddoppio della massa attiva di ⁷⁶Ge
- sistema di veto basato sull'argon liquido (LAr)
- $\cdot\,$ riduzione del fondo di un fattore \sim 10

Fase II

- fondo: $\lesssim 10^{-3}~{\rm cts}~{\rm keV^{-1}kg^{-1}yr^{-1}})$
- esposizione: \gtrsim 100 kg·yr
- attuale risultato: T^{0ν}_{1/2} > 8.0 · 10²⁵ yr (90% C.L.) [PRL, 120 (2018) 132503]

Sensibilità e previsioni

Fase II

- fondo: $\lesssim 10^{-3}$ cts keV⁻¹kg⁻¹yr⁻¹)
- esposizione: $\gtrsim 100~{\rm kg}{\rm \cdot yr}$
- attuale risultato: $T_{1/2}^{0\nu} > 8.0 \cdot 10^{25}$ yr (90% C.L.) [PRL, 120 (2018) 132503]

Luigi Pertoldi [pertoldi@pd.infn.it] - IFAE 2018 - 06 Aprile 2018

I rivelatori di GERDA

- decadimento doppio- β del ⁷⁶Ge: ⁷⁶Ge \rightarrow ⁷⁶Se + 2 e^{-}
- · Q-valore: $Q_{\beta\beta} = 2039 \text{ keV}$
- rivelatori al ⁷⁶Ge ultra-puri (87%):
 - sorgente = rivelatore: alta efficienza
 - radio-puri: bassissimo fondo intrinseco
 - alta densità: $0
 u\beta\beta$ a topologia puntiforme
 - + semiconduttore: FWHM dello 0.2% al $Q_{\beta\beta}$
 - ottimi per la Pulse Shape Discrimination (PSD)

Dati

Pulse Shape Discrimination (BEGe)

current [a.u.]

п

energy [keV]

 $(87 \pm 3)\%$

Ultimo unblinding — PRL, 120 (2018) 132503

- esposizione: 34.3 + 12.4 kg·yr.
- \cdot 2 + 2 nuovi eventi attorno al Q_{etaeta}
- Background Index (BI) (BEGe): $1^{+0.6}_{-0.6} \cdot 10^{-3}$ cts keV⁻¹kg⁻¹vr⁻¹

	Ç	freq 90% C.L	. 🤇	bayes 90% C.I	
$N_{0\nu}$		0		0	
$T_{1/2}^{2\nu}$	8.	0 · 10 ²⁵	yr 5.	$1 \cdot 10^{25}$	yr
sen	is 5.	$8 \cdot 10^{25}$	yr 4.	$5 \cdot 10^{25}$	yr

- limite superiore su $m_{\beta\beta}$ nell'intervallo 0.12 – 0.26 eV

Luigi Pertoldi [pertoldi@pd.infn.it] - IFAE 2018 - 06 Aprile 2018

- GERDA è tra i leader nella fisica del $0\nu\beta\beta$, fondo più basso mai raggiunto attorno al $Q_{\beta\beta}$. Fase II è in regime "background-free" e lo manterrà (importante per la sensibilità).
- limite attuale (frequentista): $T_{1/2}^{0\nu} > 8.0 \cdot 10^{25}$ yr (90% C.L.)
- ottima risoluzione in energia (2 3 keV al $Q_{\beta\beta}$)

Futuro prossimo:

- nuovo unblinding prossimamente
- raggiungimento sensibilità 10²⁶ yr
- raggiungimento esposizione di design di 100 kg·yr

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

- nuova collaborazione (GERDA + MAJORANA + altri) formata in ottobre 2016
- goal: 1 ton di germanio arricchito
- fase I: 200 kg in GERDA
- ulteriore riduzione del fondo rispetto a GERDA
- sensibilità fino a 10²⁷ in 5 anni

backup

Modello di fondo

Un modello di fondo accurato è fondamentale per stimare il fondo attorno al $Q_{\beta\beta}$ e studiare lo spettro del $2\nu\beta\beta$ (Majoroni, Lorentz-violation...)

- Sorgenti di fondo sono simulate tramite GEANT4 [JP: CS, 39 (2006) 362]
- $\cdot\,\,^{42}$ K, 40 K, catene 238 U e 232 Th, 60 Co e 207 Bi
- tutte le componenti di GERDA sono ricustruite

Luigi Pertoldi [pertoldi@pd.infn.it] - IFAE 2018 - 06 Aprile 2018

Luigi Pertoldi [pertoldi@pd.infn.it] - IFAE 2018 - 06 Aprile 2018

- + blind analysis: i dati attorno al $Q_{\beta\beta}$ vengono resi pubblici e analizzati periodicamente
- · Analisi frequentista (profile-likelihood) e bayesiana
- \cdot modello: fondo piatto + gaussiana centrata in Q_{etaeta} con larghezza σ_E
- 7 parametri: 6 BI + $T_{1/2}^{2\nu}$ in comune