

Studio delle prestazioni di camere GEM planari in lettura Micro-TPC in condizioni di fascio ad alta intensità

Ilaria Balossino per il gruppo CGEM-IT

balossino@fe.infn.it - INFN Sezione di Ferrara

Gaseous Electron Multiplier

Rivelatore a gas di particelle cariche

Foglio composto da due strati di rame (elettrodi) che racchiudono uno strato di Kapton, su cui sono creati dei buchi (Ø 50 μm). Applicare una d.d.p. agli elettrodi permette di avere attraverso i fori un campo elettrico (10⁶

Micro – <u>Time Projection Chamber</u>

Metodo di ricostruzione della posizione delle particelle cariche

Anodo

SI RICAVA DAI DATI:

- \rightarrow Posizione dei canali di lettura
- \rightarrow Tempo di deriva t_{strip}

V/m) per favorire la *moltiplicazione a valanga*.

Si possono utilizzare più fogli di GEM assieme interposti tra un catodo ed un anodo per ridurre la probabilità di scariche e garantire una migliore operabilità mantenendo alto il guadagno.

Test su Fascio a MAMI

MAinzer MIkrotron

	* .
ALLESTIMENTO	
4 triple-GEM planari	
5 mm di zona di deriva	
Ar:isoC ₄ H ₁₀ [90:10]	Ele
Ar:CO ₂ [70:30]	: Dir
2	

Nessun campo magnetico

CONDIZIONI AD ALTA INTENSITÀ

Elevato numero di particelle

FASCIO	CONDIZIONI
Energia 855 MeV	Inclinazione 30°
ettroni ad alta intensità	Guadagno ~8000
mensioni di pochi mm ²	Campo Elettrico di Deriva:
	2 kV/cm

SI ESTRAE DALLE SIMULAZIONI:

 \rightarrow Velocità di deriva \mathbf{v}_{strip}

SI RICOSTRUISCE LA POSIZIONE:

Proiezione della posizione dalle strip nella zona di conversione;

 $z_{strip} = t_{strip} \cdot v_{deriva}$

Primo segmento di anodo colpito di anodo colpito Interpolazione lineare · Ricostruzione della posizione di queste posizioni; 📜 della particella carica a metà

della zona di convesione (gap).

 $x = \frac{gap/2 + b}{b}$

Risultati in campo magnetico con tracce inclinate ArXiv:1803.07258

z = ax + b

Confronto con il metodo di ricostruzione del centroide della carica depositata all'anodo.

É possibile raggiungere una risoluzione spaziale di ~130 µm per un ampio

Accumulazione di carica positiva (bassa mobilità degli ioni)

Distorsione del campo elettrico

intervallo di angoli di incidenza combinando i due metodi di ricostruzione.

RISULTATI

CONCLUSIONI

Il metodo di ricostruzione Micro-TPC permette di avere una risoluzione spaziale di ~100 µm [ArXiv:1803.07263]. Le dimensioni del segnale all'anodo, la risoluzione temporale e la velocità di deriva presentano caratteristiche di stabilità fino ad una frequenza di fascio pari a 10⁷ Hz/cm², limite del metodo stesso.

