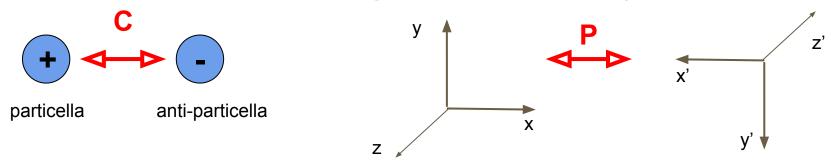


Misura dell'asimmetria di CP nei decadimenti D⁰->K_S⁰K_S⁰

Incontri di Fisica delle Alte Energie, Milano 05/04/2018 Giulia Tuci, *Università di Pisa & INFN* giulia.tuci@pi.infn.it



Violazione di CP nel Modello Standard

 Violazione di CP (CPV): non-invarianza delle leggi della fisica sotto la trasformazione combinata di coniugazione di carica (C) e parità (P)

♦ Nel MS, CPV è descritta da una fase complessa ô nella matrice CKM, che descrive interazioni tra quark e W[±]

$$\mathcal{L}_{int}^{CC} = -\frac{g_2}{\sqrt{2}}(\bar{u}_L, \bar{c}_L, \bar{t}_L)\gamma^{\mu}V_{CKM}\begin{pmatrix} d_L \\ s_L \\ b_L \end{pmatrix}W_{\mu}^{\dagger} + h.c.$$

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Può essere parametrizzata con 3 parametri reali + 1 fase complessa **\delta**

Quark charm: perché studiarlo?

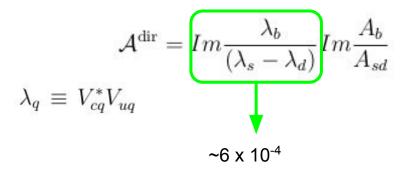
- Mesoni con charm: unici con quark pesante di tipo up in cui si può osservare mescolamento e CPV
 - Quark top decade prima di adronizzare
 - ightharpoonup Il π^0 è antiparticella di se stesso
- Decadimenti di mesoni con charm coinvolgono quark tipo o transizioni c quark più leggeri
 - ➤ Ampiezze descritte in buona approssimazione da fisica delle prime due generazioni — CPV piccola, attesa ~ O(10⁻³)
- Fondo MS piccolo, più sensibile a contributi di "nuova fisica"
- Violazione di CP non ancora osservata

Decadimento $D^0 \rightarrow K_S^0 K_S^0$

- Studio canali $D^0 \rightarrow K^+K^-$ e $D^0 \rightarrow \pi^+\pi^-$ non ha portato a risultati conclusivi
- Possibile approccio: cercare CPV in canali con ampiezze soppresse

$$\rightarrow$$
 D⁰ \rightarrow K_S⁰K_S⁰

Vale che:

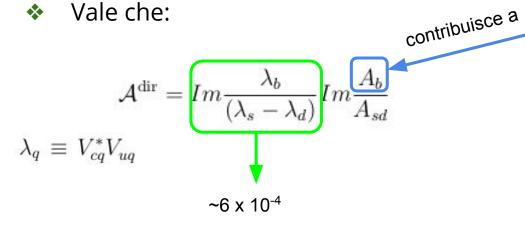

$$\mathcal{A}^{\text{dir}} = Im \frac{\lambda_b}{(\lambda_s - \lambda_d)} Im \frac{A_b}{A_{sd}}$$

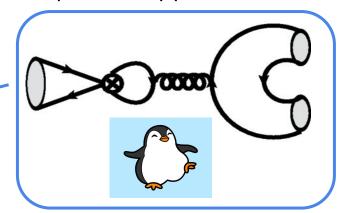
Decadimento $D^0 \rightarrow K_S^0 K_S^0$

- Studio canali $D^0 \rightarrow K^+K^-$ e $D^0 \rightarrow \pi^+\pi^-$ non ha portato a risultati conclusivi
- Possibile approccio: cercare CPV in canali con ampiezze soppresse

$$\rightarrow$$
 D⁰ \rightarrow K_S⁰K_S⁰

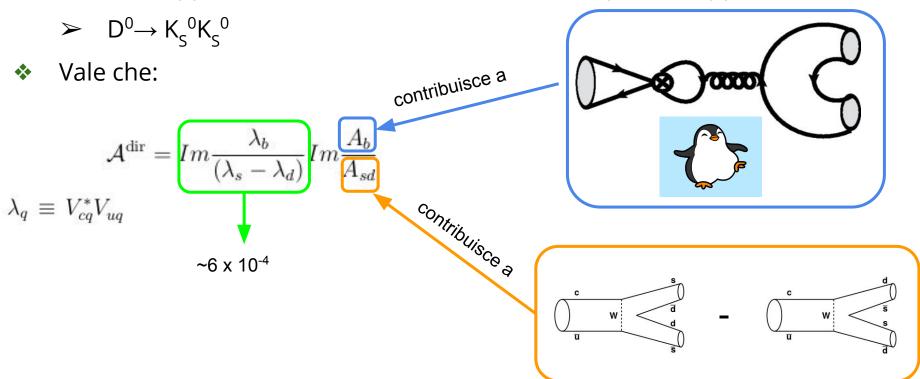
Vale che:

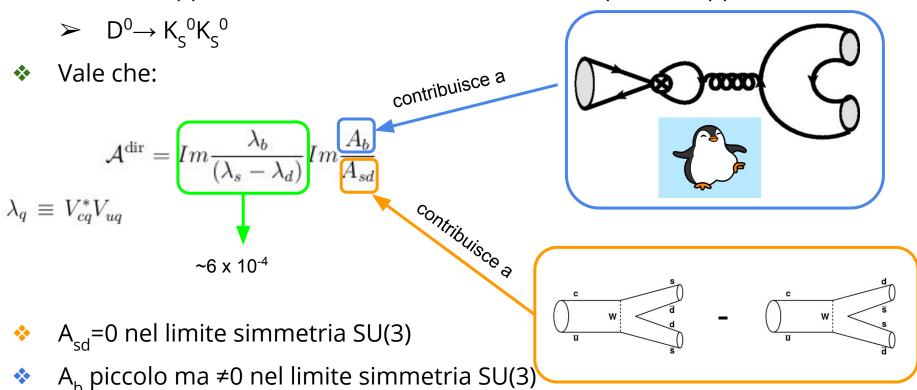



Decadimento $D^0 \rightarrow K_s^0 K_s^0$

- Studio canali $D^0 \rightarrow K^+K^-$ e $D^0 \rightarrow \pi^+\pi^-$ non ha portato a risultati conclusivi *
- Possibile approccio: cercare CPV in canali con ampiezze soppresse

$$ightharpoonup$$
 D⁰ \rightarrow K_S⁰K_S⁰

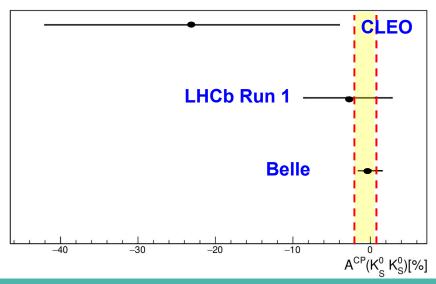

Vale che:


Decadimento $D^0 \rightarrow K_S^0 K_S^0$

- Studio canali $D^0 \rightarrow K^+K^-$ e $D^0 \rightarrow \pi^+\pi^-$ non ha portato a risultati conclusivi
- Possibile approccio: cercare CPV in canali con ampiezze soppresse

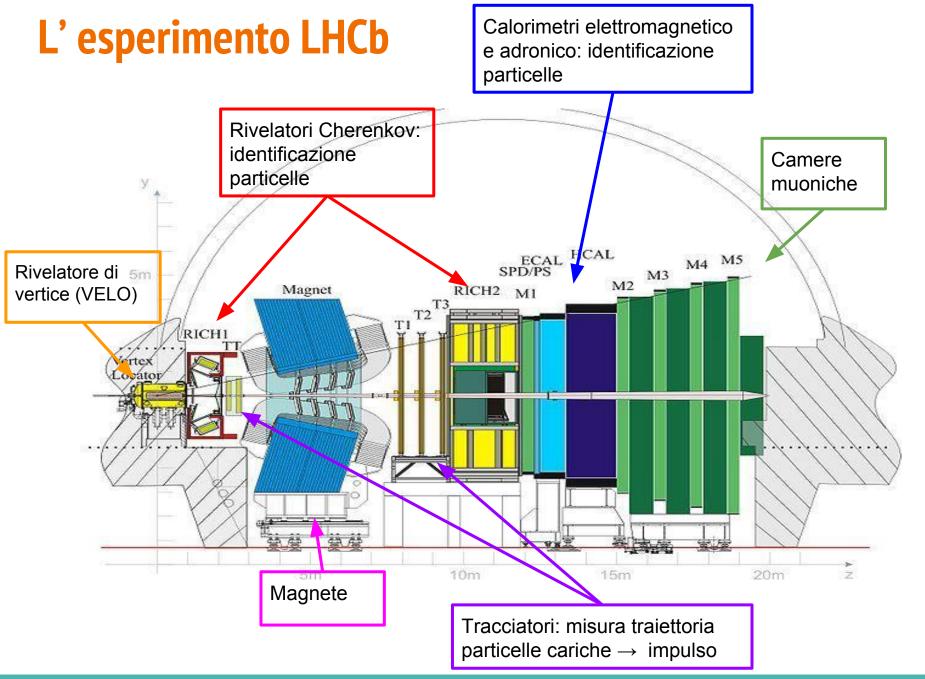
Decadimento D⁰ -> $K_S^0 K_S^0$

- Studio canali $D^0 \rightarrow K^+K^-$ e $D^0 \rightarrow \pi^+\pi^-$ non ha portato a risultati conclusivi
- Possibile approccio: cercare CPV in canali con ampiezze soppresse

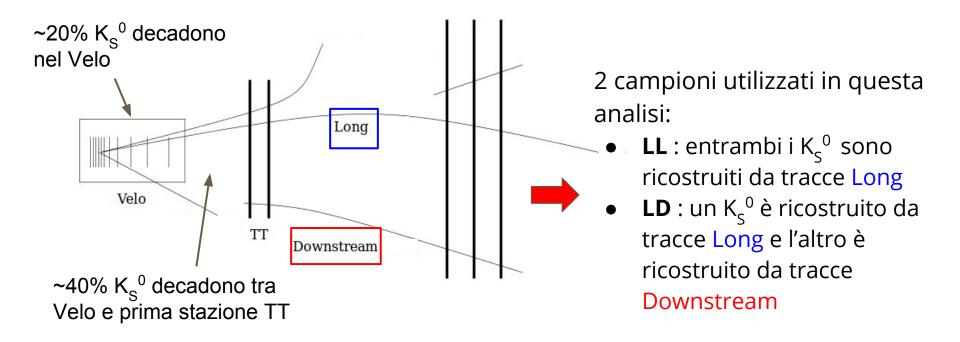


CPV potrebbe raggiungere 1%

Stato sperimentale


- Migliore misura al mondo effettuata da Belle
- Misura LHCb Run 1: 5.2% errore statistico

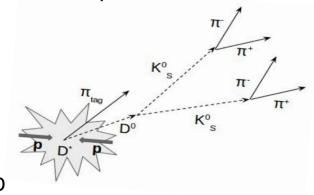
$A^{CP}(K_S^0K_S^0)$ (%)	Anno	Collaborazione
-23 ± <mark>19</mark>	2008	CLEO
-2.9± <mark>5.2</mark> ± 2.2	2015	LHCb (Run 1)
-0.02 ± <mark>1.53</mark> ± 0.17	2017	Belle
-0.38 ± <mark>1.46</mark>	Media Mondiale	


$D^0 \rightarrow K_S^0 K_S^0$ ad LHCb

- Canale difficile da selezionare a livello di trigger ad LHCb
- I K_s⁰ spesso decadono al di fuori dell'accettanza del rivelatore
- $\tau(K_{S}^{0}) = 0.9 \times 10^{-10} \text{ s}, <\beta\gamma>\sim 80 \longrightarrow \beta\gamma c\tau \sim 216 \text{ cm}$
- Nel Run 1 nessun trigger dedicato per questo canale
- Situazione differente nel Run 2 <u>Introdotto trigger dedicato per</u>
 <u>questo canale</u>
- Questa presentazione: misura con dati LHCb Run 2 (2015+2016)

Candidati

- Dati raccolti nel 2015 e 2016 → ~2fb⁻¹ luminosità integrata
- Classificazione tracce a seconda del rivelatore attraversato



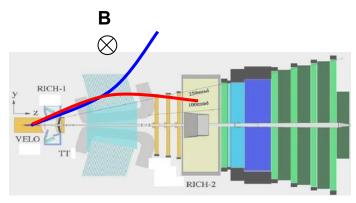
La misura in breve

Misura integrata nel tempo

$$\mathcal{A}^{CP}(D^0 \to K_{\rm s}^0 K_{\rm s}^0) \equiv \frac{\Gamma(D^0 \to K_{\rm s}^0 K_{\rm s}^0) - \Gamma(\bar{D}^0 \to K_{\rm s}^0 K_{\rm s}^0)}{\Gamma(D^0 \to K_{\rm s}^0 K_{\rm s}^0) + \Gamma(\bar{D}^0 \to K_{\rm s}^0 K_{\rm s}^0)}$$

• Determinazione flavor D⁰: richiesta provenienza da D^{*+} \rightarrow D⁰ π ⁺

Quantità misurata in LHCb

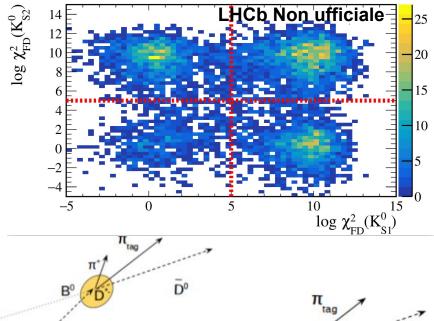

$$A_{raw}(f) = \frac{N(D^{*+} \to D^{0}(f)\pi_{s}^{+}) - N(D^{*-} \to \overline{D}^{0}(\overline{f})\pi_{s}^{-})}{N(D^{*+} \to D^{0}(f)\pi_{s}^{+}) + N(D^{*-} \to \overline{D}^{0}(\overline{f})\pi_{s}^{-})}$$

Da A_{raw} ad A^{CP}

Stato iniziale pp non autostato CP: σ_{prod} (D*+) $\neq \sigma_{prod}$ (D*-)

$$A^{raw} \approx \mathcal{A}^{CP} + A^{prod} + A^{det}$$

Campo magnetico può curvare i pioni al di fuori dell'accettanza del rivelatore a seconda della carica



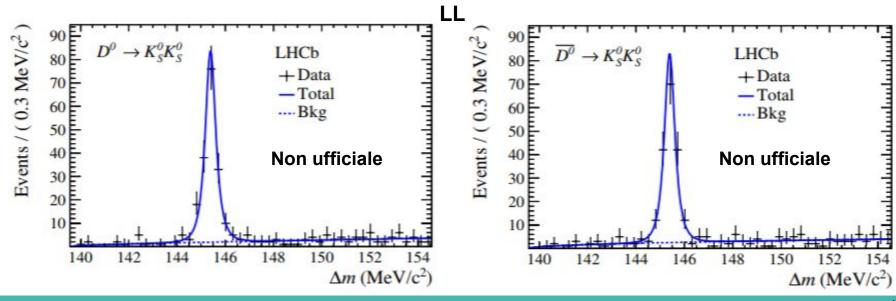
- Utilizzo di un canale di controllo D⁰ -> K⁺K⁻ e misura differenza asimmetrie
 - \rightarrow A^{CP}(D⁰ \rightarrow K⁺K⁻) = (0.04 ± 0.12 (stat)± 0.10 (sist))% (LHCb-Run1)
 - \rightarrow $A^{CP}(K_S^0K_S^0) = A^{raw}(K_S^0K_S^0) A^{raw}(K^+K^-) + A^{CP}(K^+K^-)$

Giulia Tuci, 05/04/2018

Contributi di fondo

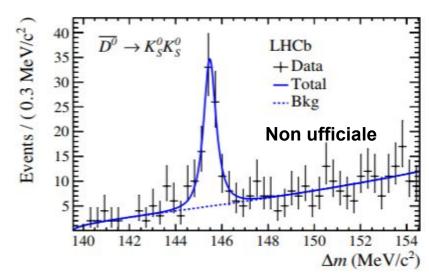
- Numero di eventi di segnale estratto con fit a
 - $\Delta m = m(D^{*\pm}) m(D^0)$
- - $ightharpoonup D^0
 ightharpoonup K^0_s \pi^+\pi^-$: fondo ridotto con taglio su distanza di volo K^0_s
 - Decadimenti secondari: ridotti con taglio su parametri di impatto D⁰

- Fondo combinatorio che non picca nella distribuzione ∆m
 - Riduzione fondo mediante classificatore kNN

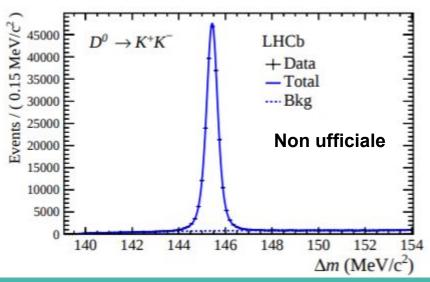

Metodo di fit

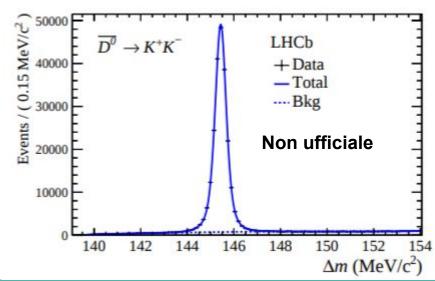
Giulia Tuci, 05/04/2018


Fit simultaneo distribuzione D*+ e D*-*

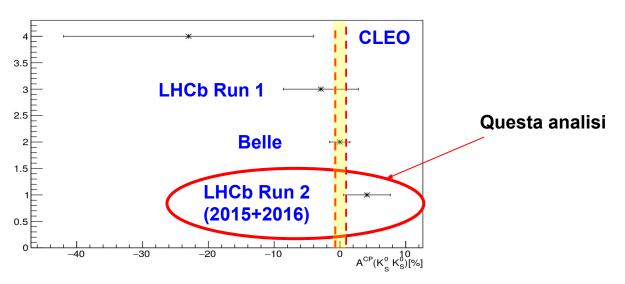

$$\mathcal{L}(p) = \frac{e^{-N_{exp}}}{N_{obs}!} \prod_{i} \left[n_s \frac{1 + q_i \mathcal{A}^{CP}_{sig}}{2} S^{q_i}(x) + n_b \frac{1 + q_i \mathcal{A}^{CP}_{bkg}}{2} B^{q_i}(x) \right]$$

- 2 componenti: segnale + fondo, entrambi descritti mediante funzioni empiriche
- Sistematico associato a scelta modello di fit $\sim 6 \times 10^{-3}$
 - Contributo maggiore all'errore sistematico totale




Fit al segnale e al canale di controllo

Canale di controllo



Risultato finale

Risultato finale (non ufficiale, articolo LHCb-PAPER-2018-012 prossimo alla pubblicazione)

$$A^{CP}(K_S^0 K_S^0)_{Run2} = (4.2 \pm 3.4 \pm 1.0)\%$$

 $A^{CP}(K_S^0 K_S^0)_{Run1+Run2} = (2.0 \pm 2.9 \pm 1.0)\%$

Diminuito statistico misura Run1 di un fattore ~1.6 e sistematico di un fattore ~2

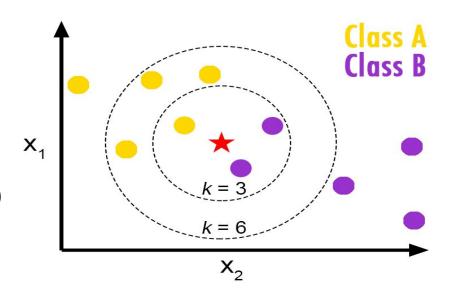
Risultato compatibile con l'ipotesi di violazione di CP nulla e con misure precedenti

Grazie per l'attenzione

Domande?

Slides di supporto

Selezione Hlt2


Variable	$K^0_{{\scriptscriptstyle \mathrm S}L} o \pi^+_L \pi^L$	$K^0_{\mathrm{s}D} \to \pi^+_D \pi^D$
$\chi^2/\mathrm{ndf}(\pi)$	< 3	< 4
$\mathcal{P}_{ ext{ghost}}(\pi)$	< 0.4	< 0.4
$\chi_{ m IP}^{ar 2}(\pi)$	> 36	
$p_{\mathrm{T}}(\pi)$	<u>-</u>	> 175 MeV/c
$p(\pi)$	(- .)	> 3000 MeV/c
$ m(\pi^+\pi^-) - m(K_{\rm S}^0) $	$< 35 \text{ MeV}/c^2$	$< 64 \text{ MeV}/c^2$
$\chi^2_{\rm vtx}/{\rm ndf}(K_{\rm s}^0)$	< 30	< 30
$ au(K_{ ext{ iny S}}^0)$	> 2 ps	> 0.5 ps
$z(K_{\mathrm{s}}^{0})-z(PV)$	(<u>6</u> -1)	> 400 mm
$z(K_{ m s}^0)$	$\in [-100, 500] \text{ mm}$	$\in [300, 2275] \text{ mm}$

Variable	$D^0 \to K^0_{\mathrm{s}L} K^0_{\mathrm{s}L}$	$D^0 \to K^0_{{}_{\rm S}} L K^0_{{}_{\rm S}} D \mid D^0 \to K^0_{{}_{\rm S}} D K^0_{{}_{\rm S}} D$
$\sum_{K_{\rm S}^0} p_{\rm T}$	> 1500 MeV/c	> 2000 MeV/c
$p_{\mathrm{T}}(ilde{K}_{\mathrm{s}}^{0})$	> 500 MeV/c	> 750 MeV/c
$\chi^2_{ m IP}(K^0_{ m S})$	> 9	> 4
$\chi^2_{VVD}(D^0)$	> 20	> 10
$m(K_{ m \scriptscriptstyle S}^0K_{ m \scriptscriptstyle S}^0)$	$\in [1789, 1949] \text{ MeV}/c^2$	
$\chi^2_{ m vtx}/{ m ndf}(D^0)$	< 10	
$\theta_{DIRA}(D^0)$	< 34.6 mrad	
$ au(D^0)$	> 0.2 ps	
$m(D^0\pi_{\rm tag}) - m(K_{\rm S}^0K_{\rm S}^0)$	$\in [130.0, 160] \text{ MeV}/c^2$	
$p_{\mathrm{T}}(\pi_{\mathrm{tag}})$	> 100 MeV/c	
$\mathcal{P}_{ ext{ghost}}(\pi_{ ext{tag}})$	< 0.4	
$\chi^2/\mathrm{ndf}(\pi_{\mathrm{tag}})$	< 3	
$\chi^2_{ m vtx}/{ m ndf}(D^*)$	< 25	
HLT1	D^0 is <code>Hlt1.*Track.*Decision%TOS</code>	

Algoritmo k-NN (k Nearest Neighbours)

Classificazione di un oggetto $x_i \not \pm a$ seconda delle caratteristiche dei k punti vicini x_j presi da un campione di training, utilizzando una distanza $d(x_i, x_i)$

$$P_S = \frac{k_S}{k_S + k_B} = \frac{k_S}{k}$$

- Ottimizzazione:
 - Numero di vicini (k)
 - ightharpoonup Numero di variabili: partendo da un set di 21 variabili, rimuovendo una variabile per volta, scegliendo la configurazione che minimizza σ_s/S
 - Variando opzioni di training (numero di eventi di segnale o fondo, utilizzo di un kernel Gaussiano)

Selezione finale LL

Selection	Yields after selection	$\sigma(N_S)/N_S[\%]$
Preliminary selection		
LO: DO_LOHadron_TOS or DS_LOGlobal_TIS		
$L0 \text{ TCK} \neq 0x1613$		
HLT1: KS_Hlt1TrackMVA_TOS		
Fiducial cuts	1069 ± 62	5.8
$R_{xy} < 5 \text{ mm}$		111
$[\log(\chi_{FD}^2(K_{s1}^0)) - 10]^2 + [\log(\chi_{FD}^2(K_{s2}^0)) - 10]^2 < 16$		
$ m(K_{\rm S1-2}^0) - 497.6 < 10.5 \text{ MeV}/c^2$		
$\log(\chi_{\rm IP}^2(D^0)) < 5$		
$ m(D^0) - 1865 < 20$		
k-NN selection		
k-NN output> 0.5	964 ± 47	4.9
Rectangular cuts		
$\log(\chi_{\rm IP}^2(D^0)) < 3$		
$\log(\chi_{\rm IP}^2(\pi_{\rm tag})) < 2.5$	730 ± 33	4.5
$\mathcal{P}_{ghost}(\pi_{\text{tag}}) < 0.1$		
$\sqrt{ m(K_{\rm S}^0_1) - 497.6 ^2 + m(K_{\rm S}^0_2) - 497.6 ^2} < 10.5 \text{ MeV}/c^2$		
Multiple candidates	710 ± 32	4.5

Selezione finale LD

Selection	Yields after selection	$\sigma(N_S)/N_S[\%]$
Preliminary selection		
LO: DO_LOHadron_TOS or DS_LOGlobal_TIS		
$L0 \text{ TCK} \neq 0 \text{x} 1613$		
HLT1: KS_Hlt1TrackMVA_TOS		
Fiducial cuts		
$R_{xy} < 5 \text{ mm}$		
$\log(\chi_{FD}^2(K_{SD}^0)) > 2.5$	621 ± 71	11.4
$ m(K_{\rm SL-D}^0) - 497.6 < 15 \text{ MeV}/c^2$		
$\log(\chi_{\mathrm{IP}}^2(\bar{D}^0)) < 5$		
$ m(D^0) - 1865 < 20$		
k-NN selection		
k-NN output > 0.35	395 ± 38	9.6
Rectangular cuts		
$\log(\chi_{\rm IP}^2(D^0)) < 3.5$		
$\log(\chi_{\rm IP}^2(\pi_{\rm tag})) < 2.5$	298 ± 28	9.4
$\mathcal{P}_{ghost}(\pi_{\mathrm{tag}}) < 0.1$		
$\sqrt{\left \frac{m(K_{\mathrm{s}L}^{0}) - 497.6}{10.5}\right ^{2} + \left \frac{m(K_{\mathrm{s}D}^{0}) - 497.6}{15}\right ^{2}} < 1$		
Multiple candidates	294 ± 33	11.2

Scelta modello fit

Aumentando il numero di parametri nel fit la likelihood diminuisce

Rischio di overfitting: non descrivo più la distribuzione, ma le fluttuazioni random

Per evitare ciò scelgo modello che minimizza BIC (Bayesian information criterion)

$$BIC = -2\log \mathcal{L} + k\log(n)$$

Aggiunta di una penalità che dipende dal numero di parametri liberi nel fit

Funzioni fit segnale

Segnale descritto mediante Johnson S_U (4 parametri liberi):

$$S(x) \propto \left[1 + \left(\frac{x-\mu}{\sigma}\right)^2\right]^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}\left[\delta + \gamma \sinh^{-1}\left(\frac{x-\mu}{\sigma}\right)\right]^2\right\}$$

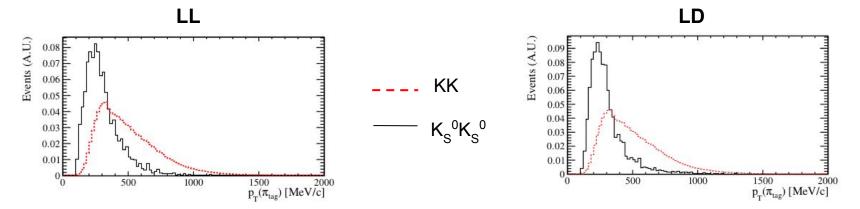
Fondo descritto mediante funzione empirica che va a 0 al valore di $m(\pi)$ (1 parametro libero):

$$B(x) \propto \sqrt{\frac{x}{m_{\pi}} - 1} \cdot \exp[c_2 \cdot \frac{x}{m_{\pi}}]$$

Sorgenti errore sistematico

- Misura dominata da incertezza statistica
- Principali fonti di errore sistematico:
 - Modello di fit: possibile dipendenza A^{raw} dalla scelta del modello di fit

Stimato variando pdfs e utilizzando pseudo-esperimenti


Frazione di fondo peaking residua: bias dovuto ad una asimmetria CP diversa da quella del segnale

Stimato da frazione residua x differenza asimmetrie

Sorgenti errore sistematico

➤ <u>Ripesamento del canale di controllo</u>: A^{prod} e A^{det} dipendono dalla cinematica del D* e del pione di tag → necessario equalizzare distribuzioni nei due canali

Valutato effetto ripesamento su A_{raw}(KK)

Totale: $\sigma(\text{sist.}) = 1.0\%$