Decadimenti rari di adroni con charm a LHCb

Davide Brundu

Università di Cagliari e INFN

IFAE 2018 - Milano

Sommario

- Motivazioni Fisiche
- Stato attuale
 - $D^0 \rightarrow \mu^+ \mu^-$
 - $D^0 \rightarrow K^- \pi^+ \rho^0 / \omega (\rightarrow \mu^+ \mu^-)$
 - $D^0 \rightarrow h^+ h^- \mu^+ \mu^-$
 - $D^{\pm}_{(s)}
 ightarrow \pi^{\pm} \mu^{+} \mu^{-}$ e $\Lambda_{c}
 ightarrow p \, \mu^{+} \mu^{-}$
 - Decadimenti con elettroni nello stato finale
- Conclusioni e prospettive

Perché studiare i decadimenti rari del charm?

- Fisica del charm: possibilità unica di sondare indirettamente Nuova Fisica nel settore dei quark-up (complementare ai sistemi K e B);
- Ricerca indiretta di Nuova Fisica: in processi altamente soppressi nel Modello Standard (MS), nuove particelle pesanti possono contribuire sensibilmente come particelle virtuali;
- Possibile aumento dei rapporti di diramazione, o modifica delle distribuzioni angolari.

Introduzione

Perché studiare i decadimenti rari del charm?

- Grande varietà di decadimenti;
- **LHCb** esperimento ideale: ottima identificazione delle particelle e risoluzione nel momento, ricostruzione dei vertici e misura dei tempi di vita. Vasto campione $N(c\bar{c}) \sim 8 \cdot 10^{12}$ (Runl+RunII);

Decadimenti rari del charm

• Si utilizzano teorie di campo effettive alla scala $\mu \sim m_{charm}$ (T.Mannel, EFT in Flavour Physics)

$$\mathcal{H} = -rac{4 G_F}{\sqrt{2}} \sum_i \mathcal{C}_i(\mu) \, \mathcal{O}_i(\mu)$$

- Nuova Fisica ad una scala Λ > μ può modificare le condizioni iniziali sui coefficienti di Wilson C_i(Λ);
- Contributi a lunga distanza possono nascondere o "diluire" tali effetti.
- Processi FCNC: vasta base di operatori (corrente-corrente, pinguino elettrodeboli e di QCD);
- Nei processi semi-leptonici, i C_i sono particolarmente sensibili a effetti di nuova fisica, soprattutto nelle regioni a bassa $m(l^+l^-)$ [PRD 66, 014009 (2002)];
- Muoni nello stato finale: favorevoli dal punto di vista sperimentale.

Contributi leptonici (pinguino EW e box)

 $\mathcal{O}_7, \ \mathcal{O}_9, \ \mathcal{O}_{10}$

Ricerca di $D^0 \rightarrow \mu^+ \mu^-$

- Decadimento FCNC, con soppressione di elicità;
- Dominato da stati intermedi a due fotoni;
- Nel MS $\mathcal{B}_{LD}(D^0 \to \mu\mu) \sim 2.7 \cdot 10^{-5} \mathcal{B}(D^0 \to \gamma\gamma)$ $\sim 2 \cdot 10^{-11}$ dal recente limite posto da Belle.

[PRD 66, 014009 (2002)], [PRD 93, 051102 (2016)]

[PLB 725 (2013) 15-24]

Miglior limite attuale di LHCb, con 1fb⁻¹:

 ${\cal B}(D^0 o \mu^+ \mu^-) < 6.2 (7.6) \cdot 10^{-9}$ al 90% (95%) C.L.

• In corso l'aggiornamento dell'analisi con luminosità 3fb⁻¹.

Stato attuale

Osservazione di $D^0 o K^- \pi^+
ho^0 / \omega (o \mu^+ \mu^-)$ [PLB 757 (2016) 558-567]

- Decadimento Cabibbo-favorito, ideale come normalizzazione per $D^0 \rightarrow h^+ h^- \mu^+ \mu^-$,
- Cercato in $m(\mu\mu) \in [675, 875] \, \text{MeV}/\text{c}^2$,
- D^0 selezionati da $D^{*+} \rightarrow D^0 \pi_s^+$, normalizzazione $D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$.

• Rapporto di diramazione misurato da LHCb, con luminosità 2fb⁻¹:

$$\mathcal{B}(D^0 \to K^- \pi^+ \mu^+ \mu^-) = (4.17 \pm 0.12 \pm 0.40) \cdot 10^{-6}$$

• Prima osservazione, compatibile con il MS $(6.7 \cdot 10^{-6})$ [JHEP 04 (2013) 135]

Osservazione di $D^0 \rightarrow h^+ h^- \mu^+ \mu^-$

Decadimento Cabibbo-soppresso con contributi a lunga distanza dominanti.

Strategia di analisi:

- Campioni di dati del 2012 (2fb⁻¹),
- D^0 selezionati da $D^{*+}
 ightarrow D^0 \pi_s^+$,
- Canale di normalizzazione: $D^0
 ightarrow {\cal K}^- \pi^+ \mu^+ \mu^-$,
- Misura del rapporto di diramazione in intervalli di $m(\mu\mu)$, sensibile ai contributi di corta distanza, lontano dalle risonanze dimuoniche.

[PRL 119 (2017) 181805]

con $\rho^0 \rightarrow \mu^+ \mu^-$

bin ba	ssa massa	η	ρ/ω	ϕ	alta massa
$m(\mu^+\mu^-)$ [MeV/ c^2]	< 525	525 - 565	565 - 950	950 - 1100	> 1100
$D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$D^0 \to K^+ K^- \mu^+ \mu^-$	\checkmark	\checkmark	\checkmark		

Osservazione di $D^0 \rightarrow h^+ h^- \mu^+ \mu^-$

[PRL 119 (2017) 181805]

Interpolazione con il metodo della massima verosimiglianza per entrambi i canali.

Osservazione di $D^0 ightarrow h^+ h^- \mu^+ \mu^-$

[PRL 119 (2017) 181805]

Misurato il rapporto di diramazione, totale e differenziale.

$D^0 \rightarrow \pi^+\pi^-\mu^+\mu^-$						
$m(\mu^+\mu^-)$ region	$[MeV/c^2]$	B [10 ⁻⁸]				
Low mass	< 525	$7.8 \pm 1.9 \pm 0.5 \pm 0.8$				
η	525 - 565	< 2.4 (2.8)				
ρ^0/ω	565 - 950	$40.6 \pm 3.3 \pm 2.1 \pm 4.1$				
ϕ	950 - 1100	$45.4 \pm 2.9 \pm 2.5 \pm 4.5$				
High mass	> 1100	< 2.8 (3.3)				
$D^0 \rightarrow K^+ K^- \mu^+ \mu^-$						
$m(\mu^+\mu^-)$ region	$[MeV/c^2]$	B [10 ⁻⁸]				
Low mass	< 525	$2.6 \pm 1.2 \pm 0.2 \pm 0.3$				
η	525 - 565	< 0.7 (0.8)				
ρ^0/ω	> 565	$12.0\pm 2.3\pm 0.7\pm 1.2$				

Rapporti di diramazione totali:

 $\mathcal{B}(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) = (9.64 \pm 0.48 \pm 0.51 \pm 0.97) \cdot 10^{-7}$ $\mathcal{B}(D^0 \to K^+ K^- \mu^+ \mu^-) = (1.54 \pm 0.27 \pm 0.09 \pm 0.16) \cdot 10^{-7}$

- Il più raro decadimento del charm osservato, compatibile con il MS. $\mathcal{B}(D^0 \to \pi \pi \mu \mu) = 1.4 \cdot 10^{-6} \text{ e } \mathcal{B}(D^0 \to K K \mu \mu) = 1.1 \cdot 10^{-7} \text{ [JHEP 04(2013)135]}$
- Prime misure di asimmetrie angolari e CP in fase di finalizzazione.

Ricerca di
$$D^{\pm}_{(s)} o \pi^{\pm} \mu^+ \mu^-$$
 e $\Lambda_c o p \, \mu^+ \mu^-$

 Simile approccio: analisi in intervalli di m(μμ) per ricerca di contributi non risonanti; normalizzazione ai decadimenti contenenti φ → μ⁺μ⁻.

Decadimenti con elettroni nello stato finale

- Interessanti per indagare processi con violazione del numero leptonico (LFV) o l'universalità leptonica (LU), similmente al settore dei mesoni B, in B(D → Xe⁺e⁻)/B(D → Xµ⁺µ⁻)
- Possibile ricerca anche dei decadimenti a 4 corpi $D^0 \rightarrow h^+h^-e^+e^-$, già indagati da BESIII, CLEO e E791. [arXiv:1802.09752],[PRL 76 2147 (1996)],[PRL 86 3969 (2001)]
- In fase di avvio la ricerca di $D^0 o K^- \pi^+ e^+ e^-$.
- Efficienze di selezione e ricostruzione inferiori, maggiori incertezze sistematiche,
- Fondi esclusivi con errata identificazione $\pi \rightarrow e$ non trascurabili.

Ricerca del decadimento $D^0 ightarrow e^\pm \mu^\mp$

- Proibito nel MS, ma possibile in scenari di Nuova Fisica con ${\cal BR}\sim 10^{-14}-10^{-6}~_{\rm [PRD~66~(2002)~014009]}$
- Ricerca con l'intero campione del Run 1 (3 fb $^{-1}$), normalizzazione a $D^0 \to K^- \pi^+$

• Miglior limite attuale di LHCb:

$${\cal B}(D^0 o e^\pm \mu^\mp) < 1.6 \cdot 10^{-8}$$
 95% C.L.

Prospettive

- Misura dei rapporti di diramazione o miglioramento dei limiti ad essi;
- Possibilità di misurare asimmetrie (A_{FB} , A_{CP} , A_{ϕ});
- Ricerca di decadimenti con elettroni nello stato finale (LFV e LU);
- Ricerca di decadimenti radiativi $D^0 \rightarrow \{\phi/\rho/K^*\}\gamma$, utili per sondare nuova fisica nella misura di A_{CP} . [JHEP 08 (2017) 091]
- Possibilità di analisi di ampiezza e angolari, promettenti per separare i contributi a lunga e corta distanza.

$\begin{array}{c} \mbox{Decadimento} \\ D^0 \rightarrow hh' \mu^+ \mu^- \\ D^0 \rightarrow \mu^+ \mu^- \\ D^+ \rightarrow \pi^+ \mu^+ \mu^- \\ D^+_s \rightarrow K^+ \mu^+ \mu^- \\ \Lambda \rightarrow p \mu \mu \\ D^0 \rightarrow e \mu \end{array}$	Run II 10 ⁻⁷ 10 ⁻⁹ 10 ⁻⁸ 10 ⁻⁷ 10 ⁻⁷ 10 ⁻⁸	$\begin{array}{c} {\sf Upgrade} \\ 10^{-8} \\ 10^{-10} \\ 10^{-9} \\ 10^{-8} \\ 10^{-8} \\ 10^{-9} \end{array}$		$\label{eq:constraint} \begin{array}{ c c } \hline Decadimento\\ \hline D^+ \rightarrow \pi^+ \mu^+ \mu^-\\ \hline D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-\\ \hline D^0 \rightarrow K^- \pi^+ \mu^+ \mu^-\\ \hline D^0 \rightarrow K^+ \pi^- \mu^+ \mu^-\\ \hline D^0 \rightarrow K^+ K^- \mu^+ \mu^- \end{array}$	Run II 0.6%(30K eventi) 3%(1500 eventi) 1%(10K eventi) 40%(30 eventi) 11%(150 eventi)	Upgrade 0.2%(300K eventi) 1%(15K eventi) 0.3%(100K eventi) 12%(300 eventi) 4%(1500 eventi)
Limiti ai rappoi (non r	rti di diram risonanti)	azione	-		Precisione statistica su /	A Contu (BESIN)LHCb works

Conclusioni

- I decadimenti rari del charm offrono un unico scenario per cercare effetti indiretti di Nuova Fisica;
- Gran parte delle misure sui rapporti di diramazione, o i loro limiti, sono risultati migliori al mondo;
- Ancora nessuna evidenza di effetti di Nuova Fisica;
- Possibilità di nuove interessanti misure grazie ai dati del Run II e dell'upgrade dell'esperimento.

LHCb

Decay mode	Bremsstrahlung	Direct emission (E)	Direct emission (M)
$D^0 \to K^- \pi^+ e^+ e^-$	$9.9\cdot 10^{-6}$	$6.2\cdot 10^{-6}$	$4.8 \cdot 10^{-7}$
$D^0 \to \pi^+\pi^- e^+ e^-$	$5.3 \cdot 10^{-7}$	$1.3 \cdot 10^{-6}$	$1.3 \cdot 10^{-7}$
$D^0 \to K^+ K^- e^+ e^-$	$5.4 \cdot 10^{-7}$	$1.1\cdot 10^{-7}$	$5.0\cdot 10^{-9}$
$D^0 \to K^+ \pi^- e^+ e^-$	$3.7\cdot 10^{-8}$	$1.7\cdot 10^{-8}$	$1.3 \cdot 10^{-9}$
$D^0 \to K^- \pi^+ \mu^+ \mu^-$	$8.6\cdot 10^{-8}$	$6.2 \cdot 10^{-6}$	$4.8 \cdot 10^{-7}$
$D^0 \to \pi^+\pi^-\mu^+\mu^-$	$5.6 \cdot 10^{-9}$	$1.3\cdot 10^{-6}$	$1.3\cdot 10^{-7}$
$D^0 \to K^+ K^- \mu^+ \mu^-$	$3.3 \cdot 10^{-9}$	$1.1 \cdot 10^{-7}$	$5.0\cdot 10^{-9}$
$D^0 \to K^+ \pi^- \mu^+ \mu^-$	$3.3\cdot10^{-10}$	$1.7\cdot 10^{-8}$	$1.3\cdot 10^{-9}$

incertezze: 30% - 50%

branching ratio	$D^0 \to \rho^0 \gamma$	$D^0\to\omega\gamma$	$D^+ \to \rho^+ \gamma$	$D_s \to {K^*}^+ \gamma$
two-loop QCD	$(0.14-2.0)\cdot 10^{-8}$	$(0.14 - 2.0) \cdot 10^{-8}$	$(0.75 - 1.0) \cdot 10^{-8}$	$(0.32 - 5.5) \cdot 10^{-8}$
HSI+WA	$(0.11-3.8)\cdot 10^{-6}$	$(0.078-5.2)\cdot 10^{-6}$	$(1.6 - 1.9) \cdot 10^{-4}$	$(1.0 - 1.4) \cdot 10^{-4}$
hybrid	$(0.041-1.17)\cdot 10^{-5}$	$(0.042 - 1.12) \cdot 10^{-5}$	$(0.017 - 2.33) \cdot 10^{-4}$	$(0.053-1.54)\cdot 10^{-4}$
[5, 6]	$(0.1 - 1) \cdot 10^{-5}$	$(0.1-0.9)\cdot 10^{-5}$	$(0.4 - 6.3) \cdot 10^{-5}$	$(1.2-5.1)\cdot 10^{-5}$
[8]	$(0.1 - 0.5) \cdot 10^{-5}$	$0.2\cdot 10^{-5}$	$(2-6) \cdot 10^{-5}$	$(0.8 - 3) \cdot 10^{-5}$
$[9]^{a}$	$3.8\cdot 10^{-6}$	_	$4.6\cdot10^{-6}$	_
$data^{\dagger}$	$(1.77\pm0.31)\cdot10^{-5}$	$<2.4\cdot10^{-4}$	_	_

https://arxiv.org/pdf/1701.06392.pdf