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AMS-02 sulla ISS
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•  Ricerca indiretta di Materia Oscura (e+/-, anti-p,….)
•  Ricerca di antimateria primordiale (anti-He)

•  Composizione dei raggi cosmici (H, He, Li, B, C, …)

In orbita da più di 6 anni

MISURA DIRETTA DI RAGGI COSMICI NELLO SPAZIO


AMS Control Room @ CERN
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AMS: spettrometro a energie TeV
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AMS: A TeV precision, multipurpose spectrometer 
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AMS: spettrometro a energie TeV
Identificazione precisa delle proprietà dei RC con misure multiple e 

ridondanti dei diversi sottorivelatori
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Antimateria: positroni
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Eccesso di positroni: sorgente addizionale di e+/-

•  Annichilazione Materia Oscura?
•  Produzione coppie e+/e- in sorgenti astrofisiche?

•  Meccanismi di propagazione?

Collisione di RC con ISM 

Collisione di RC con ISM 


17 milioni di e+/-
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Antimateria: antiprotoni
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L’interpretazione	
  in	
  termini	
  di	
  nuova	
  fisica	
  o	
  nuovi	
  meccanismi	
  
di	
  RC	
  è	
  limitata	
  dalle	
  incertezze	
  nei	
  modelli	
  	
  

Misura al limite delle predizioni senza contributo Materia Oscura

Incertezze teoriche dominanti:


•  Meccanismi di propagazioni dei RC

•  Sezioni d’urto di produzione


•  Fisica solare, propagazione in eliosfera




Phys.	
  Rev.	
  LeM.	
  117,	
  091103	
  

Figure 2: The combined total uncertainty on the predicted secondary p̄/p ratio, superim-

posed to the older Pamela data [53] and the new Ams-02 data. The curve labelled ‘fiducial’ assumes

the reference values for the di↵erent contributions to the uncertainties: best fit proton and helium

fluxes, central values for the cross sections, Med propagation and central value for the Fisk potential.

We stress however that the whole uncertainty band can be spanned within the errors.

than primary, p̄/p flux. Notice that the shaded yellow area does not coincide with the Min-
Med-Max envelope (see in particular between 50 and 100 GeV): this is not surprising, as it
just reflects the fact that the choices of the parameters which minimize and maximize the p̄/p
secondaries are slightly di↵erent from those of the primaries. However, the discrepancy is not
very large. We also notice for completeness that an additional source of uncertainty a↵ects the
energy loss processes. Among these, the most relevant ones are the energy distribution in the
outcome of inelastic but non-annihilating interactions or elastic scatterings to the extent they
do not fully peak in the forward direction, as commonly assumed [55]. Although no detailed
assessment of these uncertainties exists in the literature, they should a↵ect only the sub-GeV
energy range, where however experimental errors are significantly larger, and which lies outside
the main domain of interest of this article.

Finally, p̄’s have to penetrate into the heliosphere, where they are subject to the phenomenon
of Solar modulation (abbreviated with ‘SMod’ when needed in the following figures). We de-
scribe this process in the usual force field approximation [52], parameterized by the Fisk po-
tential �

F

, expressed in GV. As already mentioned in the introduction, the value taken by �
F

is uncertain, as it depends on several complex parameters of the Solar activity and therefore
ultimately on the epoch of observation. In order to be conservative, we let �

F

vary in a wide
interval roughly centered around the value of the fixed Fisk potential for protons �p

F

(analo-
gously to what done in [25], approach ‘B’). Namely, �

F

= [0.3, 1.0] GV ' �p

F

± 50% �p

F

. In
fig. 1, bottom right panel, we show the computation of the ratio with the uncertainties related
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Misura di carica

7


7	
  

L’interpretazione	
  in	
  termini	
  di	
  nuova	
  fisica	
  o	
  nuovi	
  meccanismi	
  
di	
  RC	
  è	
  limitata	
  dalle	
  incertezze	
  nei	
  modelli	
  	
  

He#
Li#
Be#B#

C#
N# O#

F" Ne"Na"
Mg"

Al" Si"
Cl" Ar" K"Ca"Sc" V" Cr"

P" S"
Fe"

Ni"
Ti"

H#

0.30$

0.12$

0.32$
0.30$

0.33$
0.16$

0.16$

Charge$Resolu3on$Z=6$
Tracker$Plane$1$

TRD$

Upper$TOF$

Tracker$Plane$2@8$

Lower$TOF$

RICH$
Tracker$Plane$9$

Carica campionata a diverse profondità del rivelatore

Misura “diretta” della contaminazione dovuta alla frammentazione delle 
specie nucleari pesanti 

Controllo e verifica delle incertezze sistematiche 

Co
nt
eg
gi
	
  

Carica	
  (TR
K)	
  

TRK	
  –	
  Piano	
  1	
  

TRD	
  

TOF	
  Superiore	
  

TRK	
  –	
  Piani	
  2-­‐8	
  

TOF	
  Inferiore	
  

RICH	
  

TRK	
  –	
  Piano	
  9	
  



AMS-02 dopo 6 anni in orbita sulla ISS
Valerio Vagelli


) [GeV/n]
k

Kinetic Energy (E
1 10 210

 )
1.

7
 (G

eV
/n

)
-1

 s
r s

]
2

 ( 
[m

Φ × 
2.

7
kE

3−10

2−10

1−10

1

10

MASS-91
CAPRICE-94
CAPRICE-98
PAMELA
AMS-02

) [GeV/n]
k

Kinetic Energy (E
1 10 210 310 410

 )
1.

7
 (G

eV
/n

)
-1

 s
r s

]
2

 ( 
[m

Φ × 
2.

7
kE

210

310

410

MASS-89
MASS-91
CAPRICE-94
CAPRICE-98
ATIC
CREAM
PAMELA
AMS-02
DAMPE (preliminary) 

Protoni e Nuclei di Elio

and R0 ¼ 245þ35
−31ðfitÞþ33

−30ðsysÞ % 3ðsolÞ GV. The first error
quoted (fit) takes into account the statistical and uncorre-
lated systematic errors from the flux reported in this work
[22]. The second (sys) is the error from the remaining
systematic errors, namely, from the rigidity resolution
function and unfolding, and from the absolute rigidity
scale, with the bin-to-bin correlations properly accounted.
The third (sol) is the uncertainty due to the variation of the
solar potential ϕ ¼ 0.50 to 0.62 GV [28]. The fit confirms
that above 45 GV the flux is incompatible with a single
spectral index at the 99.9% C.L. The fit is shown in
Fig. 1(c). For illustration, the fit results with R0 set to
infinity are also shown.
We observe that our measured positron fraction [29] and

our measurements of the fluxes for helium, Fig. 1(c), and
protons, [8] Fig. 4(a), all change their behavior at about
the same rigidity. This can also be seen from the similarity
of the R0 for helium and proton fluxes, R0ðprotonsÞ ¼
336þ68

−44ðfitÞþ66
−28ðsysÞ % 1ðsolÞ GV (where the errors have

the same meanings), and the maximum of the positron
fraction E0 ¼ 275% 32 GeV.
To obtain the detailed variation of γ with rigidity in a

model independent way, the spectral index is calculated
from

γ ¼ d½logðΦÞ'=d½logðRÞ' ð4Þ

over nonoverlapping rigidity intervals above 8.48 GV, see
Ref. [22], with a variable width to have sufficient sensitivity
to determine γ. The results are presented in Fig. 2(a)
together with our measured proton spectral index [8]. As
seen, the magnitude of the helium spectral index is different
from that of the proton spectral index but the rigidity
dependence is similar for helium and protons. In particular,
both spectral indices progressively harden with rigidity
above 100 GV.
To examine the difference between the rigidity depend-

ence of the proton and helium fluxes, the ratio of the proton
flux to the helium flux, or p=He ratio, was computed using
data published in Ref. [8] and those tabulated in Ref. [22],
Table I in the range where they overlap, from 1.9 GV to
1.8 TV. This p=He ratio, including the statistical and
systematic errors of the proton flux [8] and the helium
flux, is tabulated in Ref. [22], Table II. The statistical errors
are the sum in quadrature of the relative statistical errors of
the proton and helium fluxes multiplied by the p=He ratio.
The systematic errors from the trigger and acceptance are
likewise added in quadrature. The correlations in the
systematic errors from the unfolding and the absolute
rigidity scale between the proton and helium fluxes have
been accounted for in calculating the corresponding sys-
tematic errors of the p=He ratio. The contribution of
individual sources to the systematic error are added in
quadrature to arrive at the total systematic uncertainty.
Figure 2(b) shows the AMS measurement with total errors,

the quadratic sum of statistical and systematic errors,
together with other recent measurements.
Above 45 GV the p=He ratio measured by AMS is well

fit with a single power law, Eq. (2), with a χ2=d:f: ¼ 22=29
and a spectral index of γp=He ¼ −0.077% 0.002ðfitÞ %
0.007ðsysÞ. The first error quoted (fit) takes into account
the statistical and uncorrelated systematic errors from the
flux ratio reported in this work [22], Table II. The second
(sys) is the error from the remaining systematic errors,
namely, from the rigidity resolution function, unfolding and
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FIG. 2 (color). (a) The dependence of the helium and proton [8]
spectral indices on rigidity. (b) The p=He ratio as a function of
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curve indicates the fit of a single power law, Eq. (2), to the AMS
data. As seen, above 45 GV the ratio is well described by a single
power law. (c) The rigidity dependence of the p=He spectral
index γp=He as measured by AMS. As seen, γp=He increases up
to about 45 GV. Above 45 GV it becomes constant at γp=He ¼
−0.077% 0.002ðfitÞ % 0.007ðsysÞ as indicated by the solid blue
line. The dashed blue lines are the total error (the sum in
quadrature of the fit and systematic errors).
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Indurimento dello spettro 
sopra 200 GV


-  Nuove sorgenti?

-  Meccanismi di propagazione?
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RC Primari: He-C-O
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L’interpretazione	
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  nuova	
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  nuovi	
  meccanismi	
  
di	
  RC	
  è	
  limitata	
  dalle	
  incertezze	
  nei	
  modelli	
  	
  

quadratic sum of statistical and systematic errors. In this
and the subsequent figures, the points are placed along
the abscissa at ~R calculated for a flux ∝R−2.7 [27]. Earlier
measurements of the helium [28] and carbon [12] fluxes in
rigidity are also shown. The AMS measurement of the
helium flux is distinctly different from the results of
Ref. [28] which shows a sharp spectrum shape change.
The AMS measurement of the carbon flux is also distinctly
different from the results of Ref. [12], which are 20–25%
lower above 20 GV.
To examine the rigidity dependence of the fluxes, the

variation of the flux spectral indices with rigidity was
obtained in a model independent way. The flux spectral
indices were calculated from

γ ¼ d½logðΦÞ%=d½logðRÞ% ð2Þ

over nonoverlapping rigidity intervals above 8.48 GV,
with a variable width to have sufficient sensitivity to
determine γ. The results are presented in Fig. 1(d). As
seen, the magnitude and the rigidity dependence of the
helium, carbon, and oxygen spectral indices are very
similar. In particular, all spectral indices are identical
within the measurement errors above 60 GVand all spectral
indices harden with rigidity above ∼200 GV.
Figure 2 shows the AMS (a) helium, (b) carbon, and

(c) oxygen fluxes as a function of kinetic energy per nucleon
EK together with the results of previous experiments. At
high energies, the AMS measurement of the helium flux is
distinctly different from the previous experiments. The
AMS measurements of the carbon and oxygen fluxes at
high energies are also very different from previous mea-
surements, being about 20–40% higher above 10 GeV=n.
To examine the difference between the rigidity depend-

ence of the helium, carbon, and oxygen fluxes in detail,
first, the ratio of the helium flux to the oxygen flux, or
He=O ratio, was computed using the data in Tables I and III
of the SM [17], and it was reported in Table IV of the
SM [17], with its statistical and systematic errors.
Figure 3(a) shows the He=O ratio with total errors, the

quadratic sum of statistical and systematic errors, together
with the cosmic ray propagation model GALPROP [31]
prediction based on data available before the AMS. As
seen in Fig. 3(a), above 60 GV the He=O ratio measured by
the AMS is well fit by a constant value of 27.9& 0.6 with
a χ2=d:o:f: ¼ 16=27. This is in disagreement with the
GALPROP model which predicts a He=O ratio decreasing
with rigidity. Figure 6 of the SM [17] shows the AMS
He=O ratio as a function of kinetic energy per nucleon EK
together with the results of a previous experiment [6].
Similarly, the ratio of the carbon flux to the oxygen flux,

or the C=O ratio, was computed using the data in Tables II
and III of the SM [17] and reported in Table Vof SM [17],
with its statistical and systematic errors. Figure 3(b) shows
the C=O ratio with total errors together with the GALPROP

model prediction based on data available before the AMS.
As seen in Fig. 3(b), above 60 GV, the C=O ratio measured
by the AMS is well fit by a constant value of 0.91& 0.02
with a χ2=d:o:f: ¼ 25=27. This is again in disagreement
with the GALPROP model which predicts a C=O ratio
decreasing with rigidity. Figure 7 of the SM [17] shows
the AMS C=O ratio as a function of kinetic energy per
nucleon EK together with the results of previous experi-
ments [4,5,7–11]. As seen, the C=O ratio measured by the
AMS is within 10% of unity.
It is important to note that, whereas protons, helium,

carbon, and oxygen are all considered primary cosmic rays,
the independence of the measured C=O and He=O flux
ratios with rigidity is completely different from the proton
to helium flux ratio rigidity dependence, see Fig. 2(b) of
Ref. [2]. None of these unexpected results, including the
p/He flux ratio rigidity dependence [24,32], can be
explained by the current understanding of cosmic rays.
In conclusion, we have presented precise, high statistics

measurements of the helium, carbon, and oxygen fluxes
from 2 GV to 3 TV, with detailed studies of the systematic
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FIG. 2. The AMS (a) helium, (b) carbon, and (c) oxygen fluxes
as functions of kinetic energy per nucleon EK multiplied by E2.7

K
together with previous measurements [4–12,28,29]. For the AMS

measurement EK ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 ~R2 þM2

p
−MÞ=A where Z, M, and A

are the 4He, 12C, or 16O charge, mass, and atomic mass numbers,
respectively. Data from other experiments were extracted using
Ref. [30].

PRL 119, 251101 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

22 DECEMBER 2017

251101-5

errors. These measurements show that the fluxes deviate
from a single power law. Their spectral indices all pro-
gressively harden above 200 GV. Surprisingly, above
60 GV, the three fluxes have identical rigidity dependence,
as illustrated in Fig. 4. Above 60 GV, the helium to oxygen

flux ratio is constant at 27.9! 0.6 and the carbon to oxygen
flux ratio is constant at 0.91! 0.02.
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seen, above 60 GV both the He=O and C=O ratios are well
described by constant values of 27.9! 0.6 and 0.91! 0.02 with
χ2=d:o:f: ¼ 16=27 and χ2=d:o:f: ¼ 25=27, respectively.
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Δ ¼ d½logðΦS=ΦPÞ%=d½logðRÞ%; ð3Þ

whereΦS=ΦP are the ratios of the secondary to primary flu-
xes over rigidity intervals [60.3–192] and ½192–3300% GV
and shown in Fig 3. Above ∼200 GV these spectral indices
exhibit an average hardening of 0.13& 0.03. Figures 9 and
10 of the Supplemental Material [21] show all secondary to
primary flux ratios together with the results of Eq. (3). This
additionally verifies that at high rigidities the secondary
cosmic rays harden more than the primary cosmic rays. This
additional hardening of secondary cosmic rays is consistent
with expectationswhen the hardening of cosmic ray fluxes is
due to the propagation properties in the Galaxy [16].
To examine the rigidity dependence of the secondary

cosmic rays in detail, the lithium to boron Li=B and
beryllium to boron Be=B flux ratios were computed using
the data in Tables I, II, and III of the Supplemental Material
[21] and reported in Tables X and XI of the Supplemental
Material [21] with their statistical and systematic errors.
Figure 11 of the Supplemental Material [21] shows the
(a) Li=B and (b) Be=B ratios as functions of rigidity with
their total errors together with the results of fits to a constant

value above 7 GV for Li=B and above 30 GV for Be=B.
The fits yield Li=B ¼ 0.72& 0.02 with χ2=d:o:f: ¼ 51=53
and Be=B ¼ 0.36& 0.01 with χ2=d:o:f: ¼ 27=35. From
these fits we note that the Li=Be ratio is 2.0& 0.1
above 30 GV; see also Fig. 12 of the Supplemental
Material [21]. The Li and B fluxes have an identical
rigidity dependence above ∼7 GV and all three secondary
fluxes have an identical rigidity dependence above
∼30 GV. In Figs. 13, 14, and 15 of the Supplemental
Material [21], we compare our flux ratios converted to EK
using the procedure described in Ref. [24] with earlier
measurements [2–11,31–33].
In conclusion, we have presented precise, high statistics

measurements of the lithium, beryllium, and boron fluxes
from 1.9 GV to 3.3 TV with detailed studies of the
systematic errors. The Li and B fluxes have identical
rigidity dependence above 7 GV and all three fluxes have
identical rigidity dependence above 30 GV with the Li=Be
flux ratio of 2.0& 0.1. The three fluxes deviate from a
single power law above 200 GV in an identical way. As
seen in Fig. 4, this behavior of secondary cosmic rays has
also been observed in primary cosmic rays He, C, and O
[14] but the rigidity dependences of primary cosmic rays
and of secondary cosmic rays are distinctly different. In
particular, above 200 GV, the spectral indices of secondary
cosmic rays harden by an average of 0.13& 0.03more than
the primaries. These are new properties of cosmic rays.

We thank former NASA Administrator Daniel S. Goldin
for his dedication to the legacy of the ISS as a scientific
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Most importantly, several independent analyses were
performed on the same data sample by different study groups.
The results of those analyses are consistent with this Letter.
Results.— The measured lithium, beryllium, and boron

fluxes including statistical and systematic errors are reported
in Tables I, II, and III of the Supplemental Material [21] as a
function of the rigidity at the top of the AMS detector.
Figure 1 shows the lithium, beryllium, and boron fluxes

as a function of rigidity with the total errors, the sum in
quadrature of statistical and systematic errors. In this and
the subsequent figures, the points are placed along the
abscissa at ~R calculated for a flux ∝ R−2.7 [29]. As seen, the
Li and B fluxes have an identical rigidity dependence above
∼7 GV and all three secondary fluxes have an identical
rigidity dependence above ∼30 GV. The different rigidity
dependence of the Be flux is most likely due to the
significant presence of the radioactive 10Be isotope [27],
which has a half life of 1.4 MY.
Figure 8 of the Supplemental Material [21] shows the

lithium, beryllium, and boron fluxes as a function of kinetic
energy per nucleon EK together with earlier measurements
[2–11]. Data from other experiments have been extracted

using Ref. [30]. For the AMS measurement EK ¼
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 ~R2 þM2

p
−MÞ=A where Z, M, and A are the Li,

Be, and B charge, mass and atomic mass number,

respectively. The atomic mass numbers, averaged by iso-
topic composition obtained from AMS low energy mea-
surements [27], are 6.5% 0.1 for Li, 8.0% 0.2 for Be, and
10.7% 0.1 for B. The systematic errors on the fluxes due to
these uncertainties were added in quadrature to the total
errors.
To examine the rigidity dependence of the fluxes,

detailed variations of the flux spectral indices with rigidity
were obtained in a model-independent way. The flux
spectral indices γ were calculated from

γ ¼ d½logðΦÞ'=d½logðRÞ'; ð2Þ

over rigidity intervals bounded by 7.09, 12.0, 16.6, 22.8,
41.9, 60.3, 192, and 3300 GV. The results are presented in
Fig. 2 together with the spectral indices of helium, carbon,
and oxygen [14]. As seen, the magnitude and the rigidity
dependence of the lithium, beryllium, and boron spectral
indices are nearly identical, but distinctly different from the
rigidity dependence of helium, carbon, and oxygen. In
addition, above ∼200 GV, Li, Be, and B all harden more
than He, C, and O.
To examine the difference between the rigidity depend-

ence of primary and secondary cosmic rays in detail, the
ratios of the lithium, beryllium, and boron fluxes to the
carbon and oxygen fluxes were computed using the data in
Tables I, II, and III of the Supplemental Material [21]
and Tables II and III of Ref. [14], and are reported in
Tables IV–IX of the Supplemental Material [21] with their
statistical and systematic errors. The detailed variations
with rigidity of the spectral indices Δ of each flux ratio
were obtained in a model independent way using
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Indurimento dello spettro in comune 
tra primari e secondari, ma


diversa dipendenza spettrale.




Favoriti i modelli in cui l’indurimento 
dello spettro è dovuto a variazioni nel 

coefficiente di diffusione.
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Figure 1. Upper panel: the solid black line represents our fit, FT (E), to the spectrum of the total electronic component observed in cosmic rays; the band enveloping the
dashed and dotted lines show the observed positron spectrum FAMS obtained by multiplying the positron fraction by FT (E). The dashed line represents the theoretical
spectrum, Fe+(E), given in Equation (12) and the dotted line represents the spectral shape of positrons at production. Lower panel: our predicted positron fraction,
Re+(E) = Fe+(E)/FT (E), with uncertainties is shown; the shaded steeply falling region is due to the MS model.
(A color version of this figure is available in the online journal.)

Figure 2. Observed B/C ratio is plotted along with the spectra expected from the MS model and the Nested Leaky-box model (Cowsik & Burch 2010).
(A color version of this figure is available in the online journal.)

an exponential path length distribution (Cowsik et al. 1967) and
obtain a good fit to the ratios of secondary to primary nuclei
like B/C, which has been observed with good statistics up to
∼50 GeV and with decreasing precision at higher energies (see

Figure 2). The value of α ≈ 0.6 has been chosen empirically in
Galprop and other current models (Moskalenko & Strong 1998;
Davis et al. 2000) to fit the observed ratios like B/C in cosmic
rays. Similarly, the positrons are generated in the interstellar

2
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and L3–L8. This residual background is < 3% for the
boron sample and < 0.5% for carbon.
The background from carbon, nitrogen, and oxygen

interactions on materials above L1 (thin support structures
made by carbon fiber and aluminum honeycomb) has been
estimated from simulation, using MC samples generated
according to AMS flux measurements [32]. The simulation
of nuclear interactions has been validated using data as
shown in Fig. 3 of the Supplemental Material [31]. The
background from interactions above L1 in the boron
sample is 2% at 2 GV and increases up to 8% at 2.6
TV, while for the carbon sample it is< 0.5% over the entire
rigidity range. The total correction to the B=C ratio from
background subtraction is −2% at 2 GV, −3% at 20 GV,
−7% at 200 GV, and −10% at 2 TV.
After background subtraction the sample contains

2.3 × 106 boron and 8.3 × 106 carbon nuclei.
Data analysis.—The isotropic flux ΦZ

i for nuclei of
charge Z in the ith rigidity bin ðRi; Ri þ ΔRiÞ is given by

ΦZ
i ¼ NZ

i

AZ
i ϵ

Z
i TiΔRi

; ð1Þ

where NZ
i is the number of events of charge Z corrected

for bin-to-bin migrations, AZ
i is the effective acceptance, ϵZi

is the trigger efficiency, and Ti is the collection time.
The B=C ratio in each rigidity bin is then given by

!
B
C

"

i
¼ ΦB

i

ΦC
i
¼ NB

i

NC
i

!
AB
i

AC
i

ϵBi
ϵCi

"−1
: ð2Þ

In this Letter the B=C ratio was measured in 67 bins from
1.9 GV to 2.6 TV with bin widths chosen according to the
rigidity resolution.
The bin-to-bin migration of events was corrected

using the unfolding procedure described in Ref. [4]

independently for the boron and the carbon samples.
This results in a correction on the B=C ratio of −2.4%
at 2 GV, −0.5% at 20 GV, −5% at 200 GV, and −13%
at 2 TV.
Extensive studies were made of the systematic errors.

These errors include the uncertainties in the two back-
ground estimations discussed above, in the trigger effi-
ciency, in the acceptance calculation, in the rigidity
resolution function, and in the absolute rigidity scale.
The systematic error on the B=C ratio associated with

background subtraction is dominated by the uncertainty of
∼10% in the boron sample background estimation for
interactions above L1, see, for example, Fig. 3 of the
Supplemental Material [31]. The total background sub-
traction error on the B=C ratio is < 1% over the entire
rigidity range.
The systematic error on the B=C ratio associated with the

trigger efficiency is < 0.5% over the entire rigidity range.
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FIG. 2. The B=C spectral index Δ as a function of rigidity.
The dashed red line shows the single power law fit result to the
B=C ratio above 65 GV; see Fig. 1.
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present below 40 GV. The vertical dashed lines denote boundaries between these structures at I)
September 27, 2011; II) March 7, 2012; III) July 20, 2012; IV) May 13, 2013; V) February 7, 2014;
VI) December 1, 2014; VII) March 19, 2015; VIII) November 17, 2015; IX) June 20, 2016; X)
November 28, 2016. The red vertical dashed lines denote structures that have also been observed
by AMS in the electron flux and the positron flux [33].
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Analisi	
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(Poster:	
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variazioni	
  temporali	
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  flusso	
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  raggi	
  cosmici	
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  )	
  



Preliminary	
  data.	
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  refer	
  to	
  the	
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forthcoming	
  publicaCon	
  in	
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Stato attuale (2018)

LAVORI	
  IN	
  CORSO:	
  Flusso	
  di	
  azoto	
  (componente	
  primaria	
  +	
  secondaria),	
  
abbondanze	
  di	
  isotopi	
  (3He/4He,	
  2H/1H,	
  …),	
  anisotropia,	
  an1materia	
  nucleare,	
  …	
  

(Presentazione:	
  F.	
  Dimiccoli,	
  Misure	
  di	
  deuterio	
  e	
  3He	
  con	
  AMS-­‐02)	
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AMS ha inaugurato un’epoca di misure di precisione dei raggi 
cosmici necessarie per poter comprendere la dinamica nell’ambiente 

galattico e l’origine delle abbondanze di antimateria. 
 

Il rivelatore è completamente attivo e continuerà a raccogliere dati 
fino alla fine della missione ISS. 

 

Il meglio deve ancora venire! 
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RC Primari e Secondari
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Δ ¼ d½logðΦS=ΦPÞ%=d½logðRÞ%; ð3Þ

whereΦS=ΦP are the ratios of the secondary to primary flu-
xes over rigidity intervals [60.3–192] and ½192–3300% GV
and shown in Fig 3. Above ∼200 GV these spectral indices
exhibit an average hardening of 0.13& 0.03. Figures 9 and
10 of the Supplemental Material [21] show all secondary to
primary flux ratios together with the results of Eq. (3). This
additionally verifies that at high rigidities the secondary
cosmic rays harden more than the primary cosmic rays. This
additional hardening of secondary cosmic rays is consistent
with expectationswhen the hardening of cosmic ray fluxes is
due to the propagation properties in the Galaxy [16].
To examine the rigidity dependence of the secondary

cosmic rays in detail, the lithium to boron Li=B and
beryllium to boron Be=B flux ratios were computed using
the data in Tables I, II, and III of the Supplemental Material
[21] and reported in Tables X and XI of the Supplemental
Material [21] with their statistical and systematic errors.
Figure 11 of the Supplemental Material [21] shows the
(a) Li=B and (b) Be=B ratios as functions of rigidity with
their total errors together with the results of fits to a constant

value above 7 GV for Li=B and above 30 GV for Be=B.
The fits yield Li=B ¼ 0.72& 0.02 with χ2=d:o:f: ¼ 51=53
and Be=B ¼ 0.36& 0.01 with χ2=d:o:f: ¼ 27=35. From
these fits we note that the Li=Be ratio is 2.0& 0.1
above 30 GV; see also Fig. 12 of the Supplemental
Material [21]. The Li and B fluxes have an identical
rigidity dependence above ∼7 GV and all three secondary
fluxes have an identical rigidity dependence above
∼30 GV. In Figs. 13, 14, and 15 of the Supplemental
Material [21], we compare our flux ratios converted to EK
using the procedure described in Ref. [24] with earlier
measurements [2–11,31–33].
In conclusion, we have presented precise, high statistics

measurements of the lithium, beryllium, and boron fluxes
from 1.9 GV to 3.3 TV with detailed studies of the
systematic errors. The Li and B fluxes have identical
rigidity dependence above 7 GV and all three fluxes have
identical rigidity dependence above 30 GV with the Li=Be
flux ratio of 2.0& 0.1. The three fluxes deviate from a
single power law above 200 GV in an identical way. As
seen in Fig. 4, this behavior of secondary cosmic rays has
also been observed in primary cosmic rays He, C, and O
[14] but the rigidity dependences of primary cosmic rays
and of secondary cosmic rays are distinctly different. In
particular, above 200 GV, the spectral indices of secondary
cosmic rays harden by an average of 0.13& 0.03more than
the primaries. These are new properties of cosmic rays.

We thank former NASA Administrator Daniel S. Goldin
for his dedication to the legacy of the ISS as a scientific
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FIG. 3. The AMS secondary to primary flux ratio spectral
indices Δ from Eq. (3) as functions of rigidity for (a) Li=C,
Be=C, and B=C. The horizontal band indicates the fit to the B=C
ratio from our previous publication [24] which is consistent with
the results in this Letter. The results for (b) Li=O, Be=O, and B=O.
For (a) and (b) the vertical dashed line shows the interval boundary.
On average, the spectral indices of Li=C,Be=C,B=C,Li=O,Be=O,
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Most importantly, several independent analyses were
performed on the same data sample by different study groups.
The results of those analyses are consistent with this Letter.
Results.— The measured lithium, beryllium, and boron

fluxes including statistical and systematic errors are reported
in Tables I, II, and III of the Supplemental Material [21] as a
function of the rigidity at the top of the AMS detector.
Figure 1 shows the lithium, beryllium, and boron fluxes

as a function of rigidity with the total errors, the sum in
quadrature of statistical and systematic errors. In this and
the subsequent figures, the points are placed along the
abscissa at ~R calculated for a flux ∝ R−2.7 [29]. As seen, the
Li and B fluxes have an identical rigidity dependence above
∼7 GV and all three secondary fluxes have an identical
rigidity dependence above ∼30 GV. The different rigidity
dependence of the Be flux is most likely due to the
significant presence of the radioactive 10Be isotope [27],
which has a half life of 1.4 MY.
Figure 8 of the Supplemental Material [21] shows the

lithium, beryllium, and boron fluxes as a function of kinetic
energy per nucleon EK together with earlier measurements
[2–11]. Data from other experiments have been extracted

using Ref. [30]. For the AMS measurement EK ¼
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 ~R2 þM2

p
−MÞ=A where Z, M, and A are the Li,

Be, and B charge, mass and atomic mass number,

respectively. The atomic mass numbers, averaged by iso-
topic composition obtained from AMS low energy mea-
surements [27], are 6.5% 0.1 for Li, 8.0% 0.2 for Be, and
10.7% 0.1 for B. The systematic errors on the fluxes due to
these uncertainties were added in quadrature to the total
errors.
To examine the rigidity dependence of the fluxes,

detailed variations of the flux spectral indices with rigidity
were obtained in a model-independent way. The flux
spectral indices γ were calculated from

γ ¼ d½logðΦÞ'=d½logðRÞ'; ð2Þ

over rigidity intervals bounded by 7.09, 12.0, 16.6, 22.8,
41.9, 60.3, 192, and 3300 GV. The results are presented in
Fig. 2 together with the spectral indices of helium, carbon,
and oxygen [14]. As seen, the magnitude and the rigidity
dependence of the lithium, beryllium, and boron spectral
indices are nearly identical, but distinctly different from the
rigidity dependence of helium, carbon, and oxygen. In
addition, above ∼200 GV, Li, Be, and B all harden more
than He, C, and O.
To examine the difference between the rigidity depend-

ence of primary and secondary cosmic rays in detail, the
ratios of the lithium, beryllium, and boron fluxes to the
carbon and oxygen fluxes were computed using the data in
Tables I, II, and III of the Supplemental Material [21]
and Tables II and III of Ref. [14], and are reported in
Tables IV–IX of the Supplemental Material [21] with their
statistical and systematic errors. The detailed variations
with rigidity of the spectral indices Δ of each flux ratio
were obtained in a model independent way using
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Indurimento dello spettro in comune 
tra primari e secondari, ma


diversa dipendenza spettrale.




Favoriti i modelli in cui l’indurimento 
dello spettro è dovuto a variazioni nel 

coefficiente di diffusione.


Δ ¼ d½logðΦS=ΦPÞ%=d½logðRÞ%; ð3Þ

whereΦS=ΦP are the ratios of the secondary to primary flu-
xes over rigidity intervals [60.3–192] and ½192–3300% GV
and shown in Fig 3. Above ∼200 GV these spectral indices
exhibit an average hardening of 0.13& 0.03. Figures 9 and
10 of the Supplemental Material [21] show all secondary to
primary flux ratios together with the results of Eq. (3). This
additionally verifies that at high rigidities the secondary
cosmic rays harden more than the primary cosmic rays. This
additional hardening of secondary cosmic rays is consistent
with expectationswhen the hardening of cosmic ray fluxes is
due to the propagation properties in the Galaxy [16].
To examine the rigidity dependence of the secondary

cosmic rays in detail, the lithium to boron Li=B and
beryllium to boron Be=B flux ratios were computed using
the data in Tables I, II, and III of the Supplemental Material
[21] and reported in Tables X and XI of the Supplemental
Material [21] with their statistical and systematic errors.
Figure 11 of the Supplemental Material [21] shows the
(a) Li=B and (b) Be=B ratios as functions of rigidity with
their total errors together with the results of fits to a constant

value above 7 GV for Li=B and above 30 GV for Be=B.
The fits yield Li=B ¼ 0.72& 0.02 with χ2=d:o:f: ¼ 51=53
and Be=B ¼ 0.36& 0.01 with χ2=d:o:f: ¼ 27=35. From
these fits we note that the Li=Be ratio is 2.0& 0.1
above 30 GV; see also Fig. 12 of the Supplemental
Material [21]. The Li and B fluxes have an identical
rigidity dependence above ∼7 GV and all three secondary
fluxes have an identical rigidity dependence above
∼30 GV. In Figs. 13, 14, and 15 of the Supplemental
Material [21], we compare our flux ratios converted to EK
using the procedure described in Ref. [24] with earlier
measurements [2–11,31–33].
In conclusion, we have presented precise, high statistics

measurements of the lithium, beryllium, and boron fluxes
from 1.9 GV to 3.3 TV with detailed studies of the
systematic errors. The Li and B fluxes have identical
rigidity dependence above 7 GV and all three fluxes have
identical rigidity dependence above 30 GV with the Li=Be
flux ratio of 2.0& 0.1. The three fluxes deviate from a
single power law above 200 GV in an identical way. As
seen in Fig. 4, this behavior of secondary cosmic rays has
also been observed in primary cosmic rays He, C, and O
[14] but the rigidity dependences of primary cosmic rays
and of secondary cosmic rays are distinctly different. In
particular, above 200 GV, the spectral indices of secondary
cosmic rays harden by an average of 0.13& 0.03more than
the primaries. These are new properties of cosmic rays.

We thank former NASA Administrator Daniel S. Goldin
for his dedication to the legacy of the ISS as a scientific

∆
S

pe
ct

ra
l I

nd
ex

 

-0.5

-0.4

-0.3

-0.2
Li/C

Be/C

B/C

(a)

 [GV]R~Rigidity 

60 210 210×2 310 310×2

∆
S

pe
ct

ra
l I

nd
ex

 

-0.5

-0.4

-0.3

-0.2
Li/O

Be/O

B/O

(b)

 [GV]R~Rigidity 

FIG. 3. The AMS secondary to primary flux ratio spectral
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On average, the spectral indices of Li=C,Be=C,B=C,Li=O,Be=O,
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 [GV]R
~

Rigidity
30 210 210×2 310 310×2

]
1.

7
 (G

V
)

-1
sr

-1 s
-2

 [ 
m

2.
7

R~
×

Fl
ux

0

1

2

3

4
310×

Helium

30×Carbon
28×Oxygen

200×Lithium
400×Beryllium

145×Boron

FIG. 4. Comparison of the secondary cosmic ray fluxes [21]
with the AMS primary cosmic ray fluxes [14] multiplied by ~R2.7

with their total error as a function of rigidity above 30 GV. For
display purposes only, the C, O, Li, Be, and B fluxes were
rescaled as indicated. For clarity, the He, O, Li, and B data points
above 400 GV are displaced horizontally. As seen, the three
secondary fluxes have an identical rigidity dependence above
30 GV, as do the three primary fluxes above 60 GV. The rigidity
dependences of primary cosmic rays fluxes and of secondary
cosmic rays fluxes are distinctly different.
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Verifica delle frammentazioni
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Ricerca di Antielio 
(S. J. Ting, “The first five years of the AMS on the ISS: 

Unlocking the secrets of the cosmo”, 2016) 
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Momentum	=	40.3	�2.9	GeV/c
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An	anti-Helium	candidate:	
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To	date	we	have	observed	

a	few	events	
with	Z	=	-2	and	

with	mass	around	3He.		
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Ricerca di Antielio 
(S. J. Ting, “The first five years of the AMS on the ISS: 
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Identification of e+/-
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Data driven e+/- identification
Reference spectra for the signal and the background are fitted to data as a function 

of the TRD Classifier for different cuts on the ECAL Classifier

1.   ECAL  efficiently removes the majority of background protons
2.   TRD  independently evaluates the tiny remaining proton background

(2)	
  

electrons

and


positrons

protons


25




AMS-02 dopo 6 anni in orbita sulla ISS
Valerio Vagelli


The AMS-02 detector
•  Size 5 x 4 x 4 m, 7500 kg

•  Power 2500 W

•  Data Readout 300,000 channels

•  <Data Downlink> ~ 12 Mbps

•  Magnetic Field 0.14 T

•  Mission duration until the end of the 
ISS operations (currently 2024)

1 anno / 35 Tera


Col superconduttore


Col superconduttore
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Two sources: 1) large angle scattering and 2) production of secondary tracks along the path of 
the primary track. Both are well reproduced by MC. Systematic errors correspond to variations 
of these effects within their statistical limits and comparing the results with the Monte Carlo 
simulation 
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Charge Confusion estimator  
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