Misura delle proprietà del bosone di **Higgs nello stato finale in quattro** leptoni a \sqrt{s} =13 TeV

Alessandra Cappati

Università degli Studi di Torino & INFN Torino

per la Collaborazione CMS

XVII Incontri di Fisica delle Alte Energie 4-6 Aprile 2018, Milano

- Introdotto per spiegare come le particelle del Modello Standard (MS) acquistano massa (1964)
- Scoperto dagli esperimenti ATLAS e CMS [1] al CERN (2012)

- Introdotto per spiegare come le particelle del Modello Standard (MS) acquistano massa (1964)
- Scoperto dagli esperimenti ATLAS e CMS [1] al CERN (2012)

- Introdotto per spiegare come le particelle del Modello Standard (MS) acquistano massa (1964)
- Scoperto dagli esperimenti ATLAS e CMS [1] al CERN (2012)

Le sue proprietà vengono studiate per investigare la sua natura e testare eventuali discrepanze rispetto al MS

- Introdotto per spiegare come le particelle del Modello Standard (MS) acquistano massa (1964)
- Scoperto dagli esperimenti ATLAS e CMS [1] al CERN (2012)

Le sue proprietà vengono studiate per investigare la sua natura e testare eventuali discrepanze rispetto al MS

- Introdotto per spiegare come le particelle del Modello Standard (MS) acquistano massa (1964)
- Scoperto dagli esperimenti ATLAS e CMS [1] al CERN (2012)

Le sue proprietà vengono studiate per investigare la sua natura e testare eventuali discrepanze rispetto al MS

[1] JHEP 06 (2013) 081

[2] JHEP 11 (2017) 047

Alessandra Cappati - Università & INFN Torino

Il canale H \rightarrow ZZ \rightarrow 4l (I=e,µ)

Questo canale presenta:

Produzione del bosone di Higgs a LHC

S WG

Produzione del bosone di Higgs a LHC

Alessandra Cappati - Università & INFN Torino

XVII IFAE - 4-6 Aprile 2018

Produzione del bosone di Higgs a LHC

Alessandra Cappati - Università & INFN Torino

XVII IFAE - 4-6 Aprile 2018

Diversi tipi di fondo

Diversi tipi di fondo

Diversi tipi di fondo

Alessandra Cappati - Università & INFN Torino

XVII IFAE - 4-6 Aprile 2018

Discriminanti

MELA: insieme di discriminanti definiti in base alla cinematica dell'evento (nel sistema di riferimento del bosone di Higgs a riposo)

Discriminanti

MELA: insieme di discriminanti definiti in base alla cinematica dell'evento (nel sistema di riferimento del bosone di Higgs a riposo)

Leptoni

Selezione degli eventi per $H \rightarrow ZZ \rightarrow 4I 2016$

Selezionati con $p_T^{\mu} > 5 \text{ GeV}/c$ e $p_T^e > 7 \text{ GeV}/c$ e con criteri di qualità su identificazione, isolamento e parametro di impatto

Selezione degli eventi per $H \rightarrow ZZ \rightarrow 4I 2016$

Selezione degli eventi per H→ZZ→4l 2016

Selezione degli eventi per H→ZZ→4l 2016

Categorie per $H \rightarrow ZZ \rightarrow 4I \ 2016$

Eventi selezionati classificati in 7 categorie mutuamente esclusive

Normalizzazione e modellizzazione di segnale e fondo

Ricavati per ogni modo di produzione di H e sorgente di fondo, categoria e stato finale (4 μ , 4e, 2 μ 2e)

Normalizzazione e modellizzazione di segnale e fondo

Ricavati per ogni modo di produzione di H e sorgente di fondo, categoria e stato finale (4 μ , 4e, 2 μ 2e)

Fondo irriducibile: da MC

Fondo riducibile: dai dati

Segnale: da MC, parametrizzati in funzione di m_H

di eventi attesi:

Numero

expected yield in 35.9 fb 4e 25 2e2mu 20 15 10 5 118 120 122 124 126 128

30

4mu

JHEP 11 (2017) 047 generated m

Normalizzazione e modellizzazione di segnale e fondo

(2017) 047

11

JHEP

o 140

m₄ (GeV)

Ricavati per ogni modo di produzione di H e sorgente di fondo, 35.9 fb 30 4mu categoria e stato finale (4 μ , 4e, 2 μ 2e) 4e expected yield in 25 2e2mu 20 Segnale: da MC, parametrizzati in funzione di m_{H} Numero di eventi Fondo irriducibile: da MC attesi: 10 Fondo riducibile: dai dati 120 122 124 126 Forma CMS Simulation denerated m funzionale ≥1200 9 Events / (0.5 GeV 120 Fondi: funzioni 4e, $m_{\mu} = 125 \text{ GeV}$ $4\mu, m_{\mu} = 125 \text{ GeV}$ ZH-lep ggH \002 (1000 attesa polinomiali 100 Events 80 800 Simulation Simulation Segnale Parametric Model 60 600 Parametric Model $dCB(\xi) = N \cdot \begin{cases} A \cdot (B + |\xi|)^{-n_L}, & \text{for } \xi < \alpha_L \\ A \cdot (B + |\xi|)^{-n_R}, & \text{for } \xi > \alpha_R \\ \exp(-\xi^2/2), & \text{for } \alpha_L \le \xi \le \alpha_R \end{cases}$ 400 20 200 (+ Landau) 105 120 125 135 110 115 130 130 125 XVII IFAE - 4-6 Aprile 2014 (GeV)

Alessandra Cappati - Università & INFN Torino

Risultati per H \rightarrow ZZ \rightarrow 4l 2016: m_{4l}

XVII IFAE - 4-6 Aprile 2018

 $\sigma = \mu \sigma_{SM}$

Ricavato mediante regressione (ML fit) multidimensionale su:

$$\begin{split} \mathcal{L}_{2D}(m_{4\ell}, \mathcal{D}_{\mathrm{bkg}}^{\mathrm{kin}}) &= \mathcal{L}(m_{4\ell}) \mathcal{L}(\mathcal{D}_{\mathrm{bkg}}^{\mathrm{kin}} | m_{4\ell}) \\ \\ \\ \text{Modello statistico} \\ \text{2D Template} \end{split}$$

 μ_{10}

JHEP 11 (2017) 047

CMS 35.9 fb⁻¹ (13 TeV) 8 -2 Δ Inl Misura della massa ricavata mediante regressione (ML fit) multidimensionale su: 6 $\mathcal{L}(m_{4\ell}, \mathcal{D}_{mass}, \mathcal{D}_{bkg}^{kin})$ 5 4 Incertezza su m_{4l} 4μ 3 2e2u Misura effettuata dopo aver applicato 4e correzioni evento per evento su m_{4l} e D_{mass} Combined -- Combined (stat. only) $m_{\rm H} = 125.26 \pm 0.20(\text{stat}) \pm 0.08(\text{syst}) \,\text{GeV/c}^2$ 124 125 126 120 22 123 т Ge\

XVII IFAE - 4-6 Aprile 2018

Risultati per H→ZZ→4l 2016: larghezza (on-shell)

Misura ricavata mediante regressione (ML fit) su m_{4l} nell'intervallo $105 < m_{4l} < 140 \text{ GeV/c}^2$

Limitata dalla risoluzione sperimentale in massa (sensibile a larghezze $\sim 1 \text{ GeV}/c^2$)

 $\Gamma_{\rm H} < 1.10~{\rm GeV/c^2}$ @ 95% CL

Conclusioni

Misura delle proprietà del bosone di Higgs effettuata nel canale di decadimento $H \rightarrow ZZ \rightarrow 4l$ con dati pp a 13 TeV dell'Esperimento CMS corrispondenti a 35.9 fb⁻¹ [2]:

- $\mu = 1.05^{+0.15}_{-0.14}$ (stat) $^{+0.11}_{-0.09}$ (syst) @ m_H = 125.09 GeV/c²
- $\mu_{ggH,ttH} = 1.19^{+0.21}_{-0.20}$, $\mu_{VBF,VH} = 0.00^{+0.81}_{-0.00}$ @ $m_H = 125.09 \text{ GeV/c}^2$
- $m_{\rm H} = 125.26 \pm 0.20(\text{stat}) \pm 0.08(\text{syst}) \,\text{GeV/c}^2$
- $\Gamma_{\rm H} < 1.10~{\rm GeV/c^2}$ @ 95% CL

Le proprietà di decadimento e di produzione del bosone di Higgs misurate sono compatibili entro le incertezze con le previsioni del Modello Standard

[2] JHEP 11 (2017) 047

Diapositive Extra

XVII IFAE - 4-6 Aprile 2018

Il rivelatore di CMS

Alessandra Cappati - Università & INFN Torino

XVII IFAE - 4-6 Aprile 2018

Selezione degli oggetti per $H \rightarrow ZZ \rightarrow 4I 2016$

Muoni: **Elettroni**: $p_T > 5 \text{ GeV/c}$ $p_T > 7 \text{ GeV/c}$ $|\eta| < 2.4$ $|\eta| < 2.5$ $d_{xy} < 0.5 \text{ cm}$ $d_{xy} < 0.5 \text{ cm}$ $d_z < 1 \text{ cm}$ $d_z < 1 \text{ cm}$ SIP < 4SIP < 4 $Iso(\Delta R = 0.3) < 0.35$ $Iso(\Delta R = 0.3) < 0.35$ μ FSR: $p_T > 2 \text{ GeV/c}$ $|\eta| < 2.4$ $Iso(\Delta R(\gamma, leptone) < 0.5) < 1.8$ Jets: $p_T > 30 \text{ GeV/c}$ $|\eta| < 4.7$

Discriminanti

$$\mathcal{D}_{2jet} = \left[1 + \frac{\mathcal{P}_{H+JJ}(\vec{\Omega}^{H+JJ}|m_{4\ell})}{\mathcal{P}_{VBF}(\vec{\Omega}^{H+JJ}|m_{4\ell})}\right]^{-1} \qquad \mathcal{D}_{WH} = \left[1 + \frac{\mathcal{P}_{H+JJ}(\vec{\Omega}^{H+JJ}|m_{4\ell})}{\mathcal{P}_{WH}(\vec{\Omega}^{H+JJ}|m_{4\ell})}\right]^{-1} \qquad \mathcal{D}_{ZH} = \left[1 + \frac{\mathcal{P}_{H+JJ}(\vec{\Omega}^{H+JJ}|m_{4\ell})}{\int d\eta_{J}\mathcal{P}_{VBF}(\vec{\Omega}^{H+JJ}|m_{4\ell})}\right]^{-1} \qquad \mathcal{D}_{ZH} = \left[1 + \frac{\mathcal{P}_{H+JJ}(\vec{\Omega}^{H+JJ}|m_{4\ell})}{\mathcal{P}_{ZH}(\vec{\Omega}^{H+JJ}|m_{4\ell})}\right]^{-1}$$

Criteri di categorizzazione

- **VBF-2jet-tagged**: 4 leptoni + (2 o 3 jets almeno uno dei quali b-tagged, oppure 4 jets non b-tagged) + D_{2j} > 0.5
- VH-hadronic-tagged: 4 leptoni + (2 o 3 jets, oppure almeno 4 jets not b-tagged) + $D_{VH} = \max(D_{WH}, D_{ZH}) > 0.5$
- VH-leptonic-tagged: meno di 3 jets e nessun b-tagged jet + (1 leptone aggiuntivo oppure un paio di leptoni di stesso sapore e carica opposta); oppure nessun jets e almeno un leptone aggiuntivo
- tTH-tagged: almeno 4 jets con uno b-tagged oppure almeno un leptone aggiuntivo
- VH-MET-tagged: 4 leptoni + non più di 1 jet + più di 100 GeV di MET
- **VBF-1jet-tagged**: 4 leptoni + 1 jet + *D*_{1j} > 0.5
- Untagged: restanti eventi selezionati

Incertezze sistematiche

Sorgente di incertezza	tipo	valore (4e / 4µ / 2e2µ)
Luminosity	Ν	2.6%
Trigger + reconstruction + selection efficiencies	Ν	11% / 6% / 9%
Reducible background estimation	Ν	32% / 35% / 34%
4ℓ mass resolution	S	20% / 10% / 15%
Lepton energy scale	S	0.3% / 0.04% / 0.17%
b-tagging efficiency	Ν	0-8 %
Jet energy scale	Ν	2 – 18 %
$H \rightarrow ZZ \rightarrow 4\ell$ branching ratio	Ν	2%
QCD scale	Ν	3 - 10%
PDF set	Ν	3 – 5%
NLO/LO EW corrections for $q\overline{q} \rightarrow ZZ$	Ν	1-8%
NNLO/LO K-factor for gg \rightarrow ZZ	Ν	10%