SVILUPPI NELLA RICERCA DI SUPERSIMMETRIA DI TERZA GENERAZIONE CON IL RIVELATORE ATLAS

MOTIVAZIONI RICERCA DI SBOTTOM RICERCA DI STOP STATO E RISULTATI BACKUP

SVILUPPI NELLA RICERCA DI SUPERSIMMETRIA DI TERZA GENERAZIONE CON IL RIVELATORE ATLAS

Gabriele D'Amen

Università di Bologna

5 Aprile 2018 - IFAE XVII 2018

MOTIVAZIONI La naturalezza nel Modello Standard

 \circ ll partner supersimmetrico del quark top
 (stop)potrebbe essere responsabile della cancellazione della divergenza quadratica della massa dell'Higgs^1

$$m_{H}^{2} = m_{Ho}^{2} + \frac{\delta_{MS}m_{H}^{2}}{\delta_{BSM}m_{H}^{2}} + \frac{\delta_{BSM}m_{H}^{2}}{\delta_{BSM}m_{H}^{2}}$$

Correzioni fermioniche (MS)

Correzioni scalari (SUSY)

(b)

$$\delta_{MS}m_{H}^{2} = -\frac{|\lambda_{f}|^{2}}{8\pi^{2}}\Lambda_{MS}^{2} + \dots \qquad \qquad \delta_{BSM}m_{H}^{2} = \frac{\lambda_{S}}{16\pi^{2}}\Lambda^{2} + \dots$$

$$\underbrace{f}_{H - -} \underbrace{f}_{H - -}$$

• Il contributo maggiore nel MS viene dato dal quark top $(|\lambda_f| \approx 1)$

(a)

¹vedi l'interessantissimo talk (*"Testing Naturalness"*) presentato dal **Prof. Ian** Low (Argonne) a Les Rencontres de Physique de la Valleè d'Aoste, La Thuile 2018

MOTIVAZIONI

LA SUPERSIMMETRIA NATURALE

- Per mantenere le correzioni **naturali** è necessario che gli squark stop siano "leggeri" (O(TeV))
- $\circ~$ Altri stati supersimmetrici possono avere masse molto al di sopra della portata di LHC, M $\gg 1~{\rm TeV}$
- Gli squark $\tilde{b}_{L,R}$ e $\tilde{t}_{L,R}$ (superpartner di $b_{L,R}$ e $t_{L,R}$) si mescolano e formano autostati di massa $\tilde{b}_{1,2}$ e $\tilde{t}_{1,2}$
- o \widetilde{b}_1 e \widetilde{t}_1 definiti più leggeri per convenzione
-
o Nella maggior parte dei MSSM, almeno uno squark sbottom è attes
o essere più leggero dello stop pesante \tilde{t}_2

M.Papucci et al., Natural SUSY Endures [LINK]

Motivazioni

CINEMATICA DELLA TERZA GENERAZIONE

I. Gli attuali limiti posti da ATLAS sulla massa del gluino ($m_{\tilde{g}} > 1800 \text{ GeV}$) escludono il decadimento in gluino \tilde{g} (Vertice QCD) favorendo:

$$\widetilde{t}_{_1} \
ightarrow \ t + \widetilde{\chi}^{_0}_{_1} \ / \ \widetilde{b}_{_1} \
ightarrow \ b + \widetilde{\chi}^{_0}_{_1}$$

II. lo squark stop più leggero può anche decadere in:

$$\begin{split} \widetilde{t}_{1} &\to b + W + \widetilde{\chi}_{1}^{0}, \qquad & (\text{tre corpi}) \\ \widetilde{t}_{1} &\to c + \widetilde{\chi}_{1}^{0}, \qquad & (\text{soppresso per sapore}) \\ \widetilde{t}_{1} &\to b + f + f' + W + \widetilde{\chi}_{1}^{0}, \\ & & (\text{quattro corpi}) \end{split}$$

III. gli accoppiamenti possono però favorire il decadimento in chargini o neutralini pesanti:

$$\begin{split} \widetilde{t}_1 &\to t + \widetilde{\chi}_2^0 \ / \ \widetilde{b}_1 \ \to \ b + \widetilde{\chi}_2^0 \\ \widetilde{t}_1 &\to \ b + \widetilde{\chi}_1^{\pm} \ / \ \widetilde{b}_1 \ \to \ t + \widetilde{\chi}_1^{\pm} \end{split}$$

M.Papucci et al., Natural SUSY Endures [LINK]

MOTIVAZIONI Stato attuale

Stato attuale delle ricerche di produzione di coppie \tilde{t}_1 :

o Limiti di esclusione combinati su decadimento diretto di \widetilde{t}_1 in $\widetilde{\chi}_1^0;$

o Canali osservati:

$$\begin{split} \widetilde{t}_{1} &\to t + \widetilde{\chi}_{1}^{0} / \widetilde{t}_{1} \to W + b + \widetilde{\chi}_{1}^{0} \qquad (0\ell) \\ \widetilde{t}_{1} &\to t + \widetilde{\chi}_{1}^{0} / \widetilde{t}_{1} \to W + f + f' + \widetilde{\chi}_{1}^{0} \qquad (1\ell) \\ \widetilde{t}_{1} &\to t + \widetilde{\chi}_{1}^{0} / \widetilde{t}_{1} \to W + f + f' + \widetilde{\chi}_{1}^{0} \qquad (2\ell) \\ \widetilde{t}_{1} &\to c + \widetilde{\chi}_{1}^{0} / \widetilde{t}_{1} \to b + f + f' + \widetilde{\chi}_{1}^{0} \qquad (1j) \end{split}$$

 Sostanziale miglioramento nell'esclusione rispetto ai precedenti risultati di ATLAS;

• Esclusione della massa del \tilde{t}_1 vicina al TeV;

RICERCA DI SQUARK DI TERZA GENERAZIONE

Momento trasverso mancante:

- I protoni hanno la componente trasversa (rispetto all'asse del fascio) del momento nulla
- Le particelle prodotte hanno componenti parallele e trasverse del momento non nulle
- Se $E_{\rm T}^{miss} \neq 0$ (particelle invisibili), questo "sbilanciamento" è Momento mancante $E_{\rm T}^{miss}$
- A causa dei neutralini, i segnali SUSY hanno alto $E_{\rm T}^{miss}$

- Somma scalare del $p_{\rm T}$ di tutti i getti al di sopra di 30 GeV
- Sensibile ad elevate attività adroniche attese in questo tipo di segnali

$$H_T \equiv \sum ||p_{\mathrm{T}\,i}||$$

Momento Trasverso Mancante [LINK]

$$E_{\rm T}^{miss} = -\sum_i p_{\rm T}(i)$$

SVILUPPI NELLA RICERCA DI SUPERSIMMETRIA DI TERZA GENERAZIONE CON IL RIVELATORE ATLAS

Motivazioni Ricerca di Sbottom Ricerca di Stop Stato e Risultati Backup

RICERCA DI SBOTTOM

Produzione di coppie di Sbottom

PRODUZIONE DI COPPIE DI SBOTTOM Modelli proposti

Ricerca di produzione diretta di \tilde{b}_1^2 . Risultati basati su 36.1 fb⁻¹ di dati in collisioni pp a $\sqrt{s} = 13$ TeV. Due modelli semplificati proposti:

I. Canale a zero leptoni: lo sbottom leggero \tilde{b}_1 può esclusivamente decadere in:

$$\widetilde{b}_1 \rightarrow b + \widetilde{\chi}_1^0$$

II. Canale con leptone carico (e, μ) : lo sbottom leggero \tilde{b}_1 e lo stop leggero \tilde{t}_1 hanno due decadimenti permessi:

$$\begin{split} &\widetilde{b}_1 \to b + \widetilde{\chi}_1^0 \ / \ \widetilde{t}_1 \to t + \widetilde{\chi}_1^0 \\ &\widetilde{b}_1 \to t + \widetilde{\chi}_1^\pm \ / \ \widetilde{t}_1 \to b + \widetilde{\chi}_1^\pm \end{split}$$

t/bb/t

arXiv:1708.09266 [LINK]

con $\tilde{\chi}_1^{\pm}$ quasi degenere al $\tilde{\chi}_1^0$: $m_{\tilde{\chi}_1^{\pm}} - m_{\tilde{\chi}_1^0} = 1$ GeV

²arXiv:1708.09266, 30 agosto 2017, JHEP 11 (2017) 195 [LINK]

PRODUZIONE DI COPPIE DI SBOTTOM

Selezioni cinematiche

Canale a zero leptoni:

- Nessun leptone (e,μ) con $p_{\rm T}>\!\!10~{\rm GeV}$
- Almeno due getti identificati come b $E_{\rm T}^{miss} > 200 {\rm ~GeV}$
- Tre regioni di segnale ottimizzate per diverse differenze di massa tra \tilde{b}_1 e $\tilde{\chi}_1^{o}$
- Fondo MS ad alta molteplicità di getto tagliato con richieste sulla direzionalità del $E_{\rm T}^{miss}$

Canale ad un leptone (e, μ) :

- Esattamente un leptone (e, μ) passante tagli di qualità
- Almeno due getti identificati come b $E_{\rm T}^{miss} > 250/500 {\rm ~GeV}$
- Tre regioni di segnale ottimizzate per diverse differenze di massa tra \tilde{b}_1/\tilde{t}_1 e $\tilde{\chi}_1^{\pm} \approx \tilde{\chi}_1^0$

arXiv:1708.09266 [LINK]

PRODUZIONE DI COPPIE DI SBOTTOM

RISULTATI - ESCLUSIONE

Canale a zero leptoni:

Modelli esclusi nello spazio \widetilde{b}_1 - $\widetilde{\chi}_1^{\rm o}$ [LINK]

SVILUPPI NELLA RICERCA DI SUPERSIMMETRIA DI TERZA GENERAZIONE CON IL RIVELATORE ATLAS

Motivazioni Ricerca di Sbottom Ricerca di Stop Stato e Risultati Backup

RICERCA DI STOP

Produzione di coppie di Stop

RICERCA DI STOP Modelli proposti

Ricerca di produzione diretta di \tilde{t}_2^3 . Risultati basati su 36.1 fb⁻¹ di dati in collisioni pp a $\sqrt{s} = 13$ TeV. Due modelli semplificati proposti:

I. Canale con decadimento mediato da Z (stopZ): lo stop pesante \tilde{t}_2 può esclusivamente decadere in:

 $\widetilde{t}_2 \to \widetilde{t}_1 + Z \to t + \widetilde{\chi}_1^0 + \ell \overline{\ell}$

nella regione cinematica $m_{\widetilde{t}_1}=m_{\widetilde{\chi}_1^{\rm o}}+m_t$

II. Canale con decadimento mediato da H (stopH): lo stop pesante \tilde{t}_2 può esclusivamente decadere in:

 $\widetilde{t}_2 \rightarrow \widetilde{t}_1 + h \rightarrow t + \widetilde{\chi}_1^0 + b\overline{b}$

nella regione cinematica $m_{\tilde{t}_1} = m_{\tilde{\chi}_1^0} + m_t$

³arXiv:1706.03986, 13 Giugno 2017, JHEP 08 (2017) 006 [LINK]

RICERCA DI STOP

Selezioni cinematiche

Canale stopZ:

- Almeno tre leptoni (e, μ) passanti tagli di qualità
- Almeno un getto identificato com
eb $E_{\rm T}^{miss}>\!100,\,140$ o 180 GeV
- Tre regioni di segnale ottimizzate per diverse separazioni di massa tra \tilde{t}_2 e \tilde{t}_1
- Elevato impatto di leptoni erroneamente identificati, stimato con metodi matriciali basati sui dati

Canale stopH:

- Esattamente uno o due leptoni (e, μ) passanti tagli di qualità
- Almeno tre getti identificati come b $E_{\rm T}^{miss} > 120/150 {\rm ~GeV}$
- Tre regioni di segnale ottimizzate per diverse separazioni di massa tra \tilde{t}_2 e \tilde{t}_1

13/16

RICERCA DI STOP Risultati - Esclusione

Modelli esclusi nello spazio \tilde{t}_2 - $\tilde{\chi}_1^0$ [LINK]

STATO E RISULTATI Conclusioni

- Numerose analisi presentate da ATLAS hanno cercato (e cercano tutt'ora) possibili **segnali di produzione di coppie** di squark di terza generazione in collisioni *pp* ad LHC
- Non sono finora state osservate deviazioni significative dalle previsioni del MS per nessuno dei canali presi in esame
- Questi ultimi risultati restringono le **masse possibili** per gli squark leggeri di terza generazione $\tilde{t}_1, \tilde{t}_2 \in \tilde{b}_1$, che sono attesi essere non molto più pesanti del $\mathcal{O}(\text{TeV})$
- L'osservazione (o l'esclusione) di squark di terza generazione a masse "naturali" sarà di **fondamentale importanza** per i futuri sviluppi della fisica delle alte energie

BACKUP Reinterpretazione Stop1 - Motivazioni

I risultati sono stati **reinterpretati** in una ricerca per produzione di coppie di \tilde{t}_1 :

Modello di segnale:

 $-m_{\widetilde{\chi}_1^0} = 0.5 \text{ GeV}$ (tipo GMSB)

$$- \mathcal{B}(\tilde{t}_1 \to \tilde{\chi}_2^0 + t) = 100\%$$

– $\mathcal{B}(\widetilde{\chi}^{\rm o}_{2}\to\widetilde{\chi}^{\rm o}_{1}+Z/h)=50\%$ per ogni canale di decadimento

$$-\Delta(m_{\widetilde{\chi}_2^0}, m_{\widetilde{\chi}_1^0}) \ge 130 \text{ GeV}$$

BACKUP Reinterpretazione Stop1 - Limiti di esclusione

- Per questa reinterpretazione, non è stata applicata alcuna specifica strategia di analisi
- Le due regioni di segnale con la sensitività più elevate delle selezioni stopZ e stopH sono state combinate statisticamente per derivare questo limite

BACKUP Cinematica degli Squark

I. se cinematicamente permesso, a causa del vertice QCD domina il decadimento:

$$\widetilde{q} \rightarrow q + \widetilde{g}$$

II. gli attuali limiti posti da ATLAS sulla massa del gluino ($m_{\tilde{g}}$; 1800 GeV) portano a considerare:

$$\begin{aligned} \widetilde{q} &\to q + \widetilde{\chi}_i^{\mathrm{o}} \\ \widetilde{q} &\to q' + \widetilde{\chi}_i^{\pm} \end{aligned}$$

 ${\bf III.}$ il decadimento diretto alla particella supersimmetrica più leggera è sempre cinematicamente favorito

 $\widetilde{q} \rightarrow q + \widetilde{\chi}_{1}^{0}$

 ${\bf IV.}$ gli accoppiamenti possono però favorire il decadimento in chargini o neutralini pesanti:

$$\widetilde{q} \to q + \widetilde{\chi}_2^0 \widetilde{q} \to q' + \widetilde{\chi}_1^{\pm}$$