

Objectives

- O6.1: Develop analysis tools and computing infrastructure to participate in the Muon (g-2) experiment data analysis.
- O6.2: Perform precision measurement of the anomalous muon magnetic moment with the full Muon (g-2) experiment collected data sample.
- 06.3: Develop neutron transport simulation code and computing infrastructure for the Mu2e experiment.
- O6.4: Develop GEANT4 simulation of the upgraded radiation-hard BaF2 crystal calorimeter for the Mu2e-II experiment.
- O6.5: Design the upgraded BaF2 crystal calorimeter for the Mu2e-II experiment. Test of a BaF2 crystal matrix on test beam.

06.1: Latest progresses

- Gain corrections (In fill out of fill)
- DB & DQM Updates
- Slow control for all the subsystems
- Wiki Page with a lot of information

06.1: ODB Structure for Laser Configuration, Calibration and Double Pulse

06.1: ODB interface

Examples: Double Pulse & Calibration Defaults

Online Database Browser						
	Find Create Delete Create Elog from this page					
/ Settings / Laser	/ double-pulse-mode /					
Key	Value +					
OutFillBit	n					
FI2Bit	n					
FI1Bit	n					
FillBit	y .					
BofBit	n					
EofBit	n					
RunBit	y .					
RESET	19 (0x13)					
Time2BOF	10 (0xA)					
Time2T0	15 (0xF)					
Time2EOF	32 (0x20)					
NShiftRep	19 (0x13)					
TimeInFillPeriod	0 (0x0)					
NPulseInFill	1 (0x1)					
Time2T0OutFill	255 (0xFF)					
TimeOutFillPeriod	255 (0xFF)					
NPulseOutFill1	47 (0x2F)					
NPulseOutFill2	47 (0x2F)					
NPulseOutFill3	47 (0x2F)					
NPulseOutFillSim	79 (0x4F)					
ConfigFilePath	/home/debian/LaserCtr_ver2/data/OutFRAME_FIFO_Nhit96_Nevt500k_tw2_650us.txt					
InitialDelay	0 (0x0)					
FinalDelay	40000 (0x9C40)					
DeltaDelay	2000 (0x7D0)					
EvenRun	Y J					

	Online Database Browser
	Find Create Delete Create Elog from this page
/ Settings / Laser	/ calibration-mode /
Key	Value +
OutFillBit	n
FI2Bit	n
FI1Bit	n
FillBit	Y
BofBit	y .
EofBit	y .
RunBit	Y
RESET	19 (0x13)
Time2BOF	16 (0x10)
Time2T0	64 (0x40)
Time2EOF	64 (0x40)
NShiftRep	1 (0x1)
TimeInFillPeriod	0 (0x0)
NPulseInFill	1 (0x1)
Time2T0OutFill	255 (0xFF)
TimeOutFillPeriod	255 (0xFF)
NPulseOutFill1	47 (0x2F)
NPulseOutFill2	47 (0x2F)
NPulseOutFill3	47 (0x2F)
NPulseOutFillSim	79 (0x4F)
ConfigFilePath	/home/debian/LaserCtr_ver2/data/OutFRAME_FIFO_Nhit96_Nevt500k_tw2_650us.txt
Placeholder	n

06.1: Wiki page

Home My page Projects Help	Logged in as gianipez My account Sign out
Muon g-2 Search:	Muon g-2
Overview Activity Roadmap Issues Newissue Calendar News Documents Wiki Forums Files Repository HTML	Settings
Wiki » Laser » Laser Double Pulse » 🧷 Edit 🚖 Watch 📢 History	Wiki
Short Time Double Pulse	Start page
 Sequence of operations (details below): Set the laser configuration mode Load the laser configuration mode Set the mirrors Launch the sequencer Iterate steps 3 and 4 for ODD and for EVEN lasers Unset mirrors 	Index by title Index by date
1. Set the laser pulse configuration mode	
 In the MIDAS window select ODB and then / Equipment / AMC1325 / Laser / Configuration In the key LaserMode write 4 (check from the list above that this number corresponds to <i>short-double-pulse-mode</i>) If explicitly instructed, select mode 4 and modify <i>delays</i> or <i>filter wheel positions</i> at the bottom of the screen 	
2. Load the laser configuration mode	
 In the MIDAS window select Programs Make sure the run is in STOP condition Restart laser crate frontend by pressing STOP AMC1325 and then START AMC1325 Restart CCC crate frontend by pressing STOP AMC1300 and then START AMC1300 	
3. Set the mirrors	

06.1: Laser system stability monitor

Since the end of October we are running the laser in a stable configuration
 Allow to study the long term performance of our system

06.3: Neutron shielding in Mu2e

- Shielding surrounding the Cosmic-ray veto (CRV) is necessary to:
 - 1. Reduce the flux of neutral particles coming from the PS
- 2. Keep the neutron flux in the CRV SiPMs below 10^{10} n/cm²_{1MeV eq} Why?
 - R-1. High rate in the CRV induces large dead time
 - R-2. Above 10¹⁰ n/cm²_{1MeV eq} SiPMs cannot provide single PE
- Current design is based on GEANT₄ & MARS sim

NEWS contribute:

- Development of FLUKA and MCNP6 model of the Muze apparatus will allow to improve the design
 - Completely independent from GEANT4
 - MCNP6 is "data" based

• Adopting the same geometry used to compare MCNP6 with previous FLUKA and Geant4 simulations, the effect of the hydrogen content in the concrete have been firstly investigated.

 Here below the results for a shield thickness of 100 cm and neutron energy of 1 MeV are shown

• Here below the results for a shield thickness of 100 cm and neutron energy of **10 MeV** are shown

• Here below the results for a shield thickness of 100 cm and neutron energy of **100 MeV** are shown

- Hydrogen content is important in order to enhance the neutron shielding capabilities: it efficiently slows down the high energy neutrons which can then be removed by the addition of a neutron absorber like ¹⁰B (e.g. B₄C)
- At the same time a high mass density is also desirable to shield the gamma rays
- Among the different concrete compositions tested there are:

Concrete	Hydrogen content	Density
	(% by weight)	(g/cmȝ)
Barite concrete	0,690	3,500
Barite concrete + B4C (1% by weight)	0,683	3,486
[Barite concrete + B4C (1% by weight)]+ 100 kg/m3 CH2	1,108	3,221
[Barite concrete + B4C (1% by weight)] + 200 kg/m3 CH2	1,610	2,957
Serpentine-Barite concrete + B4C (1% by weight)	1,054	3,009

Summary

- New g-2 experiment data taking is well proceeding:
 - Implemented algorithms for Gain correction
 - Database & Data-quality monitor for laser system ready and running
 - Laser system is running in stable condition since the end of Oct 2017
- Neutron MCNP6 studies of shielding materials started:
 - Interaction with Mu2e software & sim group to improve the design of the neutron shield is in progress
 - Preliminary results have shown a good agreement between MCNP6 and Geant4 in evaluating material properties
 - A new set of simulations aiming at testing the performance in terms of neutron shielding of different concrete compositions have been started

Back up slides

Geometry

A pencil beam of monoenergetic neutrons strikes normally on a concrete slab. The neutrons entering the virtual detector (VD) positioned 0.5 mm downstream the slab are counted.

Slab material	Slab thickness (cm)	Beam energy (MeV)
MARS_concrete	10, 20, 30, 40, 50, 100	10^{-6} , 10^{-3} , 1.0, 10.0, 100.0

Neutron energy: 1 eV

	MCNP6	(1σ)	GEANT4	$\Delta\%^a$	MCNPX	$\Delta\%^a$	MARS	$\Delta\%^a$
10	3.328E-01	0.04%	3.35E-01	0.6%	3.33E-01	0.1%	3.27E-01	-1.8%
20	1.245E-01	0.07%	1.23E-01	-1.2%	1.25E-01	0.4%	1.16E-01	-7.3%
30	4.596E-02	0.10%	4.39E-02	-4.7%	4.61E-02	0.3%	4.06E-02	-13.2%
40	1.673E-02	0.16%	1.55E-02	-7.9%	1.68E-02	0.4%	1.39E-02	-20.3%
50	6.013E-03	0.26%	5.40E-03	-11.4%	6.05E-03	0.6%	4.68E-03	-28.5%
100	3.187E-05	3.41%	2.49E-05	-28.0%	3.18E-05	-0.2%	1.78E-05	-79.1%

Neutron energy: 1 keV

	MCNP6	(1σ)	GEANT4	∆% ^a	MCNPX	$\Delta\%^a$	MARS	$\Delta\%^a$
10	3.811E-01	0.04%	3.80E-01	-0.3%	3.80E-01	-0.3%	3.77E-01	-1.1%
20	1.708E-01	0.06%	1.68E-01	-1.7%	1.70E-01	-0.5%	1.64E-01	-4.1%
30	6.937E-02	0.09%	6.68E-02	-3.8%	6.92E-02	-0.2%	6.37E-02	-8.9%
40	2.615E-02	0.14%	2.45E-02	-6.7%	2.61E-02	-0.2%	2.28E-02	-14.7%
50	9.466E-03	0.22%	8.70E-03	-8.8%	9.51E-03	0.5%	7.80E-03	-21.4%
100	4.859E-05	2.77%	3.87E-05	-25.5%	5.10E-05	4.7%	3.09E-05	-57.2%

Neutron energy: 1 MeV

	MCNP6	(1 <i>σ</i>)	GEANT4	$\Delta\%^a$	MCNPX	$\Delta\%^a$	MARS	$\Delta\%^a$
10	3.130E-01	0.05%	3.14E-01	0.3%	3.13E-01	0.0%	3.12E-01	-0.3%
20	1.715E-01	0.07%	1.71E-01	-0.3%	1.72E-01	0.3%	1.69E-01	-1.5%
30	8.693E-02	0.09%	8.52E-02	-2.0%	8.70E-02	0.1%	8.39E-02	-3.6%
40	3.883E-02	0.14%	3.73E-02	-4.1%	3.89E-02	0.2%	3.63E-02	-7.0%
50	1.575E-02	0.20%	1.49E-02	-5.7%	1.58E-02	0.3%	1.42E-02	-10.9%
100	9.622E-05	2.03%	7.81E-05	-23.2%	9.45E-05	-1.8%	6.45E-05	-49.2%

Neutron energy: 10 MeV

	MCNP6	(1σ)	GEANT4	$\Delta\%^a$	MCNPX	$\Delta\%^a$	MARS	$\Delta\%^a$
10	6.242E-01	0.02%	6.23E-01	-0.1%	6.23E-01	-0.2%	6.14E-01	-1.7%
20	4.041E-01	0.03%	4.03E-01	-0.3%	4.03E-01	-0.3%	3.92E-01	-3.1%
30	2.572E-01	0.04%	2.56E-01	-0.5%	2.56E-01	-0.5%	2.44E-01	-5.4%
40	1.549E-01	0.06%	1.54E-01	-0.6%	1.54E-01	-0.6%	1.44E-01	-7.6%
50	8.806E-02	0.08%	8.72E-02	-1.0%	8.74E-02	-0.8%	8.01E-02	-9.9%

Neutron energy: 100 MeV

	MCNP6	(1σ)	GEANT4	$\Delta\%^a$	MCNPX	$\Delta\%^a$	MARS	∆% ^a
10	1.010E+00	0.01%	1.06E+00	4.7%	1.01E+00	0.0%	1.03E+00	1.9%
20	9.739E-01	0.01%	1.06E+00	8.1%	9.82E-01	0.8%	1.00E+00	2.6%
30	8.957E-01	0.02%	1.01E+00	11.3%	9.06E-01	1.1%	9.35E-01	4.2%
40	7.887E-01	0.02%	9.08E-01	13.1%	7.99E-01	1.3%	8.37E-01	5.8%
50	6.713E-01	0.03%	7.89E-01	14.9%	6.82E-01	1.6%	7.28E-01	7.8%
100	2.284E-01	0.03%	2.82E-01	19.0%	2.32E-01	1.6%	2.81E-01	18.7%

•

Laser system operated successfully during the commissioning run

8 single "laser+diffuser+monitoring" units

Mu2e experiment

