THE HYBRID POSITRON SOURCE USING CHANNELING: A PROMISING DEVICE FOR FUTURE COLLIDERS

THE HYBRID POSITRON SOURCE USING CHANNELING: A PROMISING DEVICE FOR FUTURE COLLIDERS

OUTLINE

* Introduction
* Enhancement in photon and positron production with oriented crystals
* Thick and thin crystals \Rightarrow optimization
* The hybrid sources (Crystal \RightarrowSweeping magnet \RightarrowConverter)
* Reliability of the source: crystal and converter: PEDD and shock waves, target activation
* The particular choice of the granular converter: advantages
* Applications to positron sources for linear and circular colliders
* R&D
* Summary and conclusions
THE HYBRID POSITRON SOURCE...

INTRODUCTION

* Needs for positron sources with high intensities, low emittances and reliable targets

* Hybrid positron source associating a high photon flux generated in crystals in axial channeling conditions with an amorphous W converter ➔ very promising [simulations, experiments @ CERN & KEK]

* After a short recall of the main features of such sources, development of the different ways of optimization [yield, heating, reliability]

* Some applications for linear and circular colliders will be described

* Summary & Conclusions
THE HYBRID POSITRON SOURCE..

ENHANCEMENT IN PHOTON AND POSITRON PRODUCTION WITH ORIENTED CRYSTALS

* Enhancement of photon generation in crystals in channeling conditions \(\rightarrow\) **radiation length** shorter than in amorphous and decreasing with increasing energy.

* High rate of **soft photons** \(\rightarrow\) creation of **soft positrons** easily captured in matching systems.

* Number of Photons and Positrons increase with incident energy
 (ex. WA103 @ CERN) \(\rightarrow\) **see figure**

* The energy radiated is increasing with crystal thickness but getting saturation (see V.Baier et al., in Phys.Stat.Solid) \(\rightarrow\) interest to use **thin crystals**: mitigation of heating effects on available potential.

Baier’s expression for potential: \(\rightarrow\)

\[
U(x) = V_0[\ln(1+1/(x+b)) - \ln(1+1/(x_0 +b))]
\]

With \(b = 2u_1^2/a_s^2\); \(u_1\) being thermal vibration amplitude
THE HYBRID POSITRON SOURCE...

THICK AND THIN CRYSTALS ➔ OPTIMIZATION

* First choice: generation of photons and e+e- pairs in rather thick crystals (4-8 mm): ex WA103 @ CERN

W crystals 4 and 8 mm thick, oriented on <111> axis have been tested at CERN ➔ high e+ yields were obtained, satisfying linear colliders requirements.

* With a 4 mm W crystal and 10 GeV e- beam, the enhancement oriented/random is of more than 4.
* With a 8 mm thick W crystal, the positron yield in momentum domain: 5 < p_L < 25 MeV/c and p_T < 8 MeV/c ➔ yield e+/e- is > 2

This energy domain corresponds to transverse capture systems and DR acceptance. A thick W crystal could be a solution for LC, concerning the yield

10 GeV e- on 4 mm W crystal
THIN AND THICK CRYSTALS: ➔ OPTIMIZATION

* If thick crystals are fulfilling yield requirements, energy deposition leading to heating must be taken into account. Moreover some saturation, with thickness increase-in the energy radiated- led to the choice of thin crystals associated to thicker converters. In the incident energy domain up to 10 GeV, an optimized thickness of 1 to 2 mm has been determined. Such association: ➔ hybrid source
A multi-GeV electron beam is impinging on a (W) thin crystal oriented on its main axis (here $<111>$). The charged particles e^+ and e^- are swept off and only the photons are hitting the amorphous converter. The distance between the two targets is about 2-3 m to allow the installation of a bending magnet.

The amorphous target can be a bulk or a granular material (made of layers of small spheres).
THE HYBRID POSITRON SOURCE

THE CHOICE OF THE CONVERTER ➔ GRANULAR

Following an idea of P. Sievers for the target of a neutrino factory (protons on target ➔ π⁺π⁻ ➔ μ⁺μ⁻ ➔ ν), we considered a granular target made of small W spheres (2 mm diameter) instead of the compact W target. Four granular targets were built at LAL (2, 4, 6 and 8 staggered layers) and sent to KEK. Simulations have shown the ability of such targets to serve as converters providing equivalent yields and better performances for the deposited powers and Peak Energy Deposition Density (PEDD). For example the yield for a 8 mm compact converter is close to that of a 8 layers granular.
4 Granular targets with 2, 4, 6 and 8 layers have been built at LAL-Orsay and sent to KEK for beam tests. The entrance face had 10x10 W spheres and the exit face 9x9 spheres having, then a central sphere. That allowed use of thermocouples on the exit faces to measure the temperature rise. The “hottest point” being on the central sphere on the beam axis.
THE HYBRID POSITRON SOURCE...

RELIABILITY OF THE HYBRID SOURCE: That is concerning:

Radiation resistance of the crystal
Heating effects on crystal and converter
The PEDD
Activation of the targets
RADIATION RESISTANCE OF THE CRYSTAL

The main source of damage being the Coulomb scattering of the incident electrons on the nuclei of the crystal string. When the recoil energy of the nucleus is above some threshold ($E_d \sim 50$ eV for W) the nucleus can be displaced from its site. If the recoil energy is $> 2E_d$ the nucleus can provoke a cascade of displacements. An experimental test has been done at SLAC.

A 0.3 mm W crystal has been installed upstream of the SLC positron converter. It was irradiated during a period of 6 months. Incident electron intensity as beam position and dimensions on the crystal were continuously controlled.

Figure 3: The SLC experimental set-up

THE HYBRID POSITRON SOURCE..

RADIATION DAMAGE TEST AT SLAC

The SLC beam: $E = 29.5 \text{ GeV}$
- average intensity: 2.5×10^{10} pulse
- Frequency: 10 and 30 Hz
- Integrated intensity (6 months): 1.2×10^{19} e-
- Spot area on the crystal: 6.2 mm^2
- Total fluence: 2×10^{20} e-/cm2

Analysis:
- X-ray and γ analysis have been operated by diffractometry methods at the Max-Planck Institute of Stuttgart, before and after irradiation. No modification in the mosaic spread of the crystal was observed. The result of the measurement done after irradiation ids shown. The damage threshold should be higher (for e-).
- That fluence corresponded to the level of appearance of damages on a Si crystal hit by 28 GeV and 450 GeV protons (BNL & Fermilab)

![Image](image.png)

Figure 4: Mosaic distribution function of sample C2 obtained by γ-diffractometry. The γ beam is on the irradiated zone.
THE HYBRID POSITRON SOURCE..

CRYSTAL HEATING

Taking into account the variation of the potential with the temperature, simulations were undertaken with a 8 mm thick W crystal (<111> axis). It resulted that a variation of $\Delta T = 600 \pm 2$ K decreased the e+ yield by $\sim 15\%$. The incident beam ≈ 10 GeV; 5×10^{11} e-/pulse; 150 Hz. In order to keep a moderate temperature \Rightarrow crystal cooling

Moreover: better to use thin crystal

Cooling may be realized using water cooling (left fig.)

Or using gas jet (right fig.)
THE HYBRID POSITRON SOURCE USING CHANNELING: A PROMISING DEVICE FOR FUTURE COLLIDERS

- HEATING OF THE CONVERTER
- The large amount of deposited energy due to the high positron beam intensity required for the future linear colliders is leading to important heating and thermal shocks. The average heating as the energy deposition density can be mitigated using rotating converters as wheel (see figure) or pendulum. The Peak Energy Deposition Density (PEDD) may provoke thermal shocks leading to breaking \(\Rightarrow \) SLC
- As an example, the converter foreseen for the hybrid source of ILC is receiving a deposited power of 10 kW; this is two times less than for a conventional source using 4.8 GeV e- and a 16 mm W target or 60% less with a 3 GeV e- beam (see former project of purely conventional source @ POSIPOL 17)

THE HYBRID POSITRON SOURCE..

Peak Energy Deposition Density (PEDD)

The deposited energy by the beam pulses is distributed in the target volume in non-uniform way; it is maximum on the beam axis and increases with the depth. At each pulse, a mechanical stress could appear due to the thermal gradient. At the exit face of the converter and on the axis, the Peak Energy Deposition Density is present. ➔ Breaking may appear. That happened for the SLC target. After analysis: a maximum PED for W was stated at 35 J/g. Simulations are systematically operated to verify that this limit is not reached.

➔ determination of the energy deposited in the smallest volume on the exit face of the target and on the axis ➔ PEDD

➔ choice of the source parameters (Incident beam dimensions, distance crystal-converter,…) to keep the PEDD under the limit

➔ the mechanical stresses giving rise to shock waves propagating at sound velocity in the material, simulate the internal tensile efforts.

➔ granular converter offers the best solution: simulations made with a granular converter (2 mm diameter spheres) and a bulk converter have shown a maximum shock pressure ten times less than for a bulk converter with the same working conditions. : ILC case (40MPa vs 400 Mpa)
THE HYBRID POSITRON SOURCE..

ACTIVATION OF THE TARGETS

- The activation is related to photon/electron interaction with the nuclei causing emission of nucleons (protons, neutrons, etc.) when the impinging particle has an energy over the nucleus binding energy. The threshold is of some MeV for heavy materials as W. In such materials the main interaction is of (γ, n) type. The photon absorption by the nucleus leads to its excitation followed by a de-excitation leading to emission of secondaries as neutrons. The main process is related to the GDR (Giant Dipole resonance) which exhibits a maximum E(γ) around 14 MeV for W. The neutrons may be a radiation hazard themselves or provoking induced activity. Their number N_n is rising with the nuclear size [$\sim N/Z$, where N=A-Z]. The activation is increasing with the target thickness.

- The description of this process can be quantitatively operated with codes as FLUKA or GEANT. As underlined by Frascati physicists after tests on the Beam Test Facility, the experimental results are in better agreement with FLUKA (L. Quintieri et al. Quantification of the validity of simulations based on GEANT4 and FLUKA for photo-nuclear interactions in the high energy range, in The European Physical Journal Conferences 153, 06023, (2017).
THE HYBRID POSITRON SOURCE..

APPLICATIONS OF HYBRID SOURCES FOR FUTURE COLLIDERS

A- CLIC BASELINE POSITRON SOURCE

PEDD ➔ ~ 1 GeV/cm3/e- ➔ with 5.2x10⁹ e-/bunch and 312 bunches/pulse ➔ PEDD ~ 14 J/g

This kind of source has been already profoundly studied and adopted by the CLIC (many publications available).

Yield: 8 e+/e- (total) ➔ ~ 1 e+/e- @ 200 MeV ➔ CLIC requirements are fulfilled!!!
THE HYBRID POSITRON SOURCE..

With ILC pulse \((2 \times 10^{12} \text{ e}^-)\) \(\Rightarrow 23 \text{ J/g}\)

The pulse time structure of ILC has been modified before the target in order to decrease the power deposited by pulse. \(\Rightarrow 1 \text{ ms} \Rightarrow 13 \text{ macropulses @ 300 Hz}\)
THE HYBRID POSITRON SOURCE..
THE HYBRID POSITRON SOURCE..
THE HYBRID POSITRON SOURCE..

Positron source requirements

<table>
<thead>
<tr>
<th>Ring energy</th>
<th>Be 3mm</th>
<th>Li 10mm</th>
<th>H2 liquid 35mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>acceptance</td>
<td>e⁻ beam</td>
<td>e⁺ drive</td>
<td>e⁻ beam</td>
</tr>
<tr>
<td>%</td>
<td>lifetime</td>
<td>beam (MW)</td>
<td>lifetime</td>
</tr>
<tr>
<td>5</td>
<td>35</td>
<td>2.69E+16</td>
<td>277</td>
</tr>
<tr>
<td>10</td>
<td>47</td>
<td>2.01E+16</td>
<td>207</td>
</tr>
</tbody>
</table>

- Drive beam power is given by the number of e⁺/sec accelerated up to 45 GeV
- Need to increase ring energy acceptance Δp/p in order to reduce requirements on e⁺ source!
- Present: Δp/p = ±6%, τ = 40 turns, e⁺/s = 2.4x10¹⁶, P= 250 MW
- Goal: Δp/p = ±10%, τ > 100 turns, e⁺/s < 10¹⁶, P < 100 MW
- Ongoing studies on embedded e⁺ source from γ coming downstream from target

e⁺ production rates achieved so far (SLC) and needed

<table>
<thead>
<tr>
<th></th>
<th>S-KEKB</th>
<th>SLC</th>
<th>CLIC (3 TeV)</th>
<th>ILC (H)</th>
<th>FCC-ee (Z)</th>
<th>LEMMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>10¹⁴ e⁺/s</td>
<td>0.025</td>
<td>0.06</td>
<td>1.1</td>
<td>2</td>
<td>0.05</td>
<td>100</td>
</tr>
</tbody>
</table>

State of the art

Synergy with ALL e⁺e⁻ future colliders

From S.Guiducci (see talk M.Biagini; “verso la nuova strategia europea”, Roma, sept.2018)
THE HYBRID POSITRON SOURCE..

A POSITRON SOURCE FOR LEMMA RING

* The positron source of CLIC type# :

* The hybrid source has the following parameters:
Crystal thickness: 1.4 mm
Amorphous target: granular with 6 layers of 2 mm W spheres.
The number of incident electrons is 1.5×10^{10} /bunch
The number of bunches/pulse is 100. The linac frequency is 50 Hz
The generated positrons are captured by AMD and accelerated up to 45 GeV. With a transmission efficiency slightly close to one, we have 1.5×10^{10} e+/bunch.
The positron bunches are injected in the 100 ring buckets having 200 ns separation. The positron pulse has 1.5×10^{12} e+. The number of injected positrons/sec is 7.5×10^{13} . Reaching the requested number of 2×10^{16} e+/s needs further developments.

CLIC pulse is 1.6×10^{12} e+ similar to LEMMA pulse. PEDD will be also ~ 14 J/g for LEMMA pulses.

From F.Collamati
THE HYBRID POSITRON SOURCE..

R&D FORESEEN FOR HYBRID SOURCES

* OPTIMIZATION OF THE HYBRID SOURCE PARAMETERS
 - Simulations ➔ crystal thickness, converter shape and thickness, distance crystal-converter ➔ positron beam transport to DR, bunch and energy compression
 - Tests with e- beam ➔ at KEK ➔ measurement of temperature rise ➔ derivation of the energy deposited and of its density ➔ comparison with the simulations.

* IMPROVEMENT OF THE ANALYTICAL APPROACH AND OF THE SIMULATION TOOLS
 ➔ collaboration with Minsk Institute and INFN-Ferrara
THE HYBRID POSITRON SOURCE..

SUMMARY & CONCLUSIONS

* The hybrid positron source is providing solutions for future linear and circular colliders. The great number of photons produced in channeling conditions allows a high yield of positrons in the conversion process leading, henceforth, to thinner converters with alleviated energy deposition and lower PEDD. Moreover, use of granular converters offers better behavior with respect to the thermal shock waves which are responsible of the target breaking, as observed on SLC.

* Additionally, the activation of the converter will be much less than in the case of the conventional thick converter giving the same yield; as an example, for ILC conventional option the activation is more than two times stronger than with the hybrid option. This is due to the large number of photons produced in channeling conditions leading to thinner converters- for the same yield- in the case of hybrid sources.