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Electromagnetic dipole moment and particles spin rotation
in bent crystals at Large Hadron Collider
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The index of refraction and effective potential 
energy of relativistic particles in matter

The wave number of the particle in vacuum is denoted k, k′ = kn is the wave 
number of the particle in medium. Expression for n does not contain ħ.

Kinetic energy of a particle in vacuum is not equal to that in medium.
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From the energy conservation condition we immediately obtain 
the necessity to suppose that a particle in medium possesses 
effective potential energy. This energy can be found easily from
the evident equality:

Effective potential energy of particle 
interaction in matter



Effective potential energy of particle 
interaction with plane and axis
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Elastic scattering of a particle with spin 1/2 
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Scattering of a particle with spin 1/2 in
crystals
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Effective potential energy determined by
the anomalous magnetic moment
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Effective potential energy determined by
the anomalous magnetic moment
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Effective potential energy  determined by P-odd and 
T-even interactions
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Effective potential energy determined by the 
electric dipole moment and other T-nonivariant

interactions
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P and CP violating spin rotation in bent crystals
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P and CP violating spin rotation in bent crystals
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Behavior of the spin rotation caused by magnetic moment and T-reversal 
violation interactions. Black arrows represent spin rotation about effective 
magnetic field (about bent axis, direction     ), red arrows represent spin 
rotation about electric field (direction     ), purple arrows represent new 
effect – magnetic spin rotation in direction      , spin rotation owing to P-
violating interactions, is not shown here for simplicity.
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Hyperbolic magnetic spin rotation and EDM (Todd  
interactions) measuring



Hyperbolic magnetic spin rotation and EDM (Todd 
interactions) measuring

The following estimation for the value      can be obtained:    .
The charm baryon EDM is predicted to be as large as             . Spin  rotation
frequency             determined by such charmed baryon EDM is  

. As a result, the nonelastic processes, which are
caused by magnetic moment scattering, can imitate the EDM and T odd  

contribution.
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Behavior of the spin rotation caused by magnetic moment, T-reversal 
violation interactions (including EDM) and P-violation spin rotation about 
direction     and rotation in direction     (orange and green arrows). 
Rotation in direction and direction is not shown for simplicity.
It is obvious that P-odd T-even interactions can imitate EDM rotation.
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P and CP violating spin rotation in bent crystals



P violating spin rotation in bent crystals

Precession frequency is determined by the real part of the amplitude of
baryon weak scattering by an electron (nucleus). This amplitude can be
evaluated by Fermi theory for the energies, which are necessary for W and
Z bosons production or smaller:
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For different particle trajectories in a bent crystal the value of precession
frequency could vary in the range . Therefore, when
a particle passes in a crystal, its spin undergoes additional rotation
around momentum direction at angle .The effect grows
for a heavy baryon as a result of the mechanism similar to that of its EDM 
growth!
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• When analyzing particle’s spin rotation, which is caused by 
electric dipole moment interaction with electric field, one 
should consider both Podd,Teven and Podd, Todd non-invariant 
spin rotations, resulting from weak interaction with electrons 
and nuclei.

• It gives unique possibility for measurement of constants 
determining Todd, Podd (CP) violating interactions and Podd, 
Teven interactions of baryons with electrons and nucleus 
(nucleons).

• Spin orientation of particles (positive and negative), which 
have passed through the bent (straight) crystal, can be 
measured using the intensity asymmetry of the scattering of 
baryons in the second straight crystal.  

Conclusion



Thank you!



By turning the crystal 180◦
around the direction of
incident baryon momentum
One could observe that
Podd spin rotation does not
change, while the sign
of MDM and Todd spin
rotations does due to change
of the electric field direction.
Subtracting results of
measurements for two
opposite crystal positions
one could obtain the angle of
rotation, which does not
depend on Podd effect.

P and CP violating spin rotation in bent crystals



Separation of MDM and T

Separation of the contributions caused by MDM and T-odd spin rotation is
possible when comparing experimental results for two initial orientations of
polarization vector . Namely: and , i.e. the initial is
parallel to the bending axis of the crystal or .

In real situation rotating the crystal by 90o so that direction of S0 is parallel to
B* can be more convenient.
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Effective potential energy of particle 
interaction with crystal
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Absorption caused by parity violating weak interaction also contributes to change
in spin direction. This rotation is caused by the imaginary part of weak scattering
amplitude and is proportional to the difference of total scattering cross-sections 
σ↑↑ and σ↓↑.

P violating spin rotation in bent crystals

When baryon trajectory passes in the area, where collisions with nuclei are
important (this occurs in the vicinity of potential barrier for positively charged
particles), the value . Similar to the real part ReB for the case
of heavy baryons the difference in cross-sections grows.
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Behavior of the spin rotation caused by magnetic moment and EDM. The 
figure is reprinted from Botella et all, On the search for the electric dipole
moment of strange and charm baryons at LHC, Eur. Phys J.C. 77, 181 (2017).
Black arrows represent spin rotation caused by magnetic dipole moment, red 
arrows represent spin rotation caused by electric dipole moment.

Electromagnetic dipole moment and particles spin rotation
in bent crystals at Large Hadron Collider



Effective potential energy determined by
spin-orbit interaction
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